Suppr超能文献

用于自动检测犬尾胸段和腰段侧位X线图像中椎间盘间隙变窄部位的深度学习模型的开发。

Development of a deep learning model for automatic detection of narrowed intervertebral disc space sites in caudal thoracic and lumbar lateral X-ray images of dogs.

作者信息

Park Junseol, Cho Hyunwoo, Ji Yewon, Lee Kichang, Yoon Hakyoung

机构信息

Department of Veterinary Medical Imaging, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.

College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea.

出版信息

Front Vet Sci. 2024 Nov 27;11:1453765. doi: 10.3389/fvets.2024.1453765. eCollection 2024.

Abstract

Intervertebral disc disease is the most common spinal cord-related disease in dogs, caused by disc material protrusion or extrusion that compresses the spinal cord, leading to clinical symptoms. Diagnosis involves identifying radiographic signs such as intervertebral disc space narrowing, increased opacity of the intervertebral foramen, spondylosis deformans, and magnetic resonance imaging findings like spinal cord compression and lesions, alongside clinical symptoms and neurological examination findings. Intervertebral disc space narrowing on radiographs is the most common finding in intervertebral disc extrusion. This study aimed to develop a deep learning model to automatically recognize narrowed intervertebral disc space on caudal thoracic and lumbar X-ray images of dogs. In total, 241 caudal thoracic and lumbar lateral X-ray images from 142 dogs were used to develop and evaluate the model, which quantified intervertebral disc space distance and detected narrowing using a large-kernel one-dimensional convolutional neural network. When comparing veterinary clinicians and the deep learning model, the kappa value was 0.780, with 81.5% sensitivity and 95.6% specificity, showing substantial agreement. In conclusion, the deep learning model developed in this study, automatically and accurately quantified intervertebral disc space distance and detected narrowed sites in dogs, aiding in the initial screening of intervertebral disc disease and lesion localization.

摘要

椎间盘疾病是犬类中最常见的脊髓相关疾病,由椎间盘物质突出或挤出压迫脊髓引起,导致临床症状。诊断包括识别影像学征象,如椎间盘间隙变窄、椎间孔透明度增加、脊柱关节病性畸形,以及磁共振成像结果,如脊髓压迫和病变,同时结合临床症状和神经学检查结果。X线片上的椎间盘间隙变窄是椎间盘挤出最常见的表现。本研究旨在开发一种深度学习模型,以自动识别犬类胸腰椎尾段X线图像上变窄的椎间盘间隙。总共使用了来自142只犬的241张胸腰椎尾段侧位X线图像来开发和评估该模型,该模型使用大核一维卷积神经网络量化椎间盘间隙距离并检测变窄情况。将兽医临床医生与深度学习模型进行比较时,kappa值为0.780,敏感性为81.5%,特异性为95.6%,显示出高度一致性。总之,本研究开发的深度学习模型能够自动、准确地量化犬类椎间盘间隙距离并检测变窄部位,有助于椎间盘疾病的初步筛查和病变定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/708e/11631885/990c1cfe10e8/fvets-11-1453765-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验