Suppr超能文献

探究炎症标志物在营养不良的结直肠癌患者中的临床预测效用及列线图构建。

Investigating the clinical predictive utility of inflammatory markers and nomogram development in colorectal cancer patients with malnutrition.

作者信息

Wang Xuexing, Tang Xingxing, Xu Jinsong, Zhang Rong, Chu Jie, Chen Chunmei, Wei Chunmei

机构信息

Department of Oncology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, China.

Department of Thoracic Surgery, The Third People's Hospital of Honghe Hani and Yi Autonomous Prefecture, Honghe, China.

出版信息

Front Nutr. 2024 Nov 26;11:1442094. doi: 10.3389/fnut.2024.1442094. eCollection 2024.

Abstract

OBJECTIVE

The aim of this study is to investigate the relationship and prognostic significance of serum neutrophil-lymphocyte ratio (NLR), systemic immune-inflammatory index (SII), platelet-lymphocyte ratio (PLR), and prognostic nutritional index (PNI) in colorectal cancer (CRC) patients with malnutrition, as well as to construct a nomogram for predicting the onset of malnutrition.

METHODS

The clinical data of 391 inpatients who were hospitalized from December 1, 2021 to January 31, 2023 the diagnosis of CRC were selected and divided into a malnutrition group (121 cases) and a well-nourished group (270 cases) according to whether they were malnourished or not. Focusing on comparing the differences in serum NLR, PLR, SII index, PNI index and general information between the two groups, the Binary logistics regression analysis was used to analyze the factors affecting malnutrition, and receiver operating characteristic (ROC) curves were established to assess the predictive value of serum NLR, PLR, SII index, and PNI index individually and jointly for malnutrition, and to calculate the optimal predictive thresholds. Finally a highly accurate clinical predictive nomogram was constructed.

RESULTS

Compared with the well-nourished group, the malnourished group had higher serum NLR, SII index, PLR and lower PNI index levels, with statistically significant differences ( < 0.001). The area under the curve of NLR, SII index, PLR, and PNI index alone and in combination predicted a poor prognosis of 0.705, 0.665, 0.636, 0.773, and 0.784, respectively. After conducting Logistic regression analysis, the nomogram, which included BMI, NRS-2002, long-term bed rest, and PNI, demonstrated strong predictive capabilities. Decision curves highlighted the clinical utility of the predictive nomograms. The receiver operating characteristic curve revealed strong discrimination (area under the curve [AUC] = 0.958, 95% CI: 0.937-0.979). Additionally, the ROC analysis indicated a sensitivity of 0.843 and specificity of 0.937. Calibration curves exhibited excellent concordance between nomogram predictions and observed outcomes. Decision curves highlighted the clinical utility of the predictive nomograms.

CONCLUSION

Serum NLR, SII index, PLR, and PNI are significant predictive factors for the development of malnutrition in patients with CRC. These indices, whether considered individually or collectively, possess clinical relevance in forecasting malnutrition. Furthermore, the creation of an innovative nomogram prediction model offers considerable clinical utility.

摘要

目的

本研究旨在探讨血清中性粒细胞与淋巴细胞比值(NLR)、全身免疫炎症指数(SII)、血小板与淋巴细胞比值(PLR)和预后营养指数(PNI)在营养不良的结直肠癌(CRC)患者中的关系及预后意义,并构建预测营养不良发生的列线图。

方法

选取2021年12月1日至2023年1月31日住院确诊为CRC的391例患者的临床资料,根据是否营养不良分为营养不良组(121例)和营养良好组(270例)。重点比较两组血清NLR、PLR、SII指数、PNI指数及一般资料的差异,采用二元logistic回归分析影响营养不良的因素,绘制受试者工作特征(ROC)曲线评估血清NLR、PLR、SII指数及PNI指数单独及联合对营养不良的预测价值,并计算最佳预测阈值。最后构建高度准确的临床预测列线图。

结果

与营养良好组相比,营养不良组血清NLR、SII指数、PLR较高,PNI指数较低,差异有统计学意义(<0.001)。NLR、SII指数、PLR及PNI指数单独及联合预测预后不良的曲线下面积分别为0.705、0.665、0.636、0.773和0.784。进行Logistic回归分析后,包含BMI、NRS-2002、长期卧床及PNI的列线图显示出强大的预测能力。决策曲线突出了预测列线图的临床实用性。受试者工作特征曲线显示出较强的区分能力(曲线下面积[AUC]=0.958,95%CI:0.937-0.979)。此外,ROC分析显示敏感性为0.843,特异性为0.937。校准曲线显示列线图预测与观察结果之间具有良好的一致性。决策曲线突出了预测列线图的临床实用性。

结论

血清NLR、SII指数、PLR及PNI是CRC患者发生营养不良的重要预测因素。这些指标单独或综合考虑,在预测营养不良方面均具有临床相关性。此外,创新的列线图预测模型具有相当大的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fb/11632461/c08c8c6c5d26/fnut-11-1442094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验