Suppr超能文献

基于机器学习的胶质母细胞瘤预后亚组分析:一项多中心研究。

Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study.

作者信息

Akbari Hamed, Bakas Spyridon, Sako Chiharu, Fathi Kazerooni Anahita, Villanueva-Meyer Javier, Garcia Jose A, Mamourian Elizabeth, Liu Fang, Cao Quy, Shinohara Russell T, Baid Ujjwal, Getka Alexander, Pati Sarthak, Singh Ashish, Calabrese Evan, Chang Susan, Rudie Jeffrey, Sotiras Aristeidis, LaMontagne Pamela, Marcus Daniel S, Milchenko Mikhail, Nazeri Arash, Balana Carmen, Capellades Jaume, Puig Josep, Badve Chaitra, Barnholtz-Sloan Jill S, Sloan Andrew E, Vadmal Vachan, Waite Kristin, Ak Murat, Colen Rivka R, Park Yae Won, Ahn Sung Soo, Chang Jong Hee, Choi Yoon Seong, Lee Seung-Koo, Alexander Gregory S, Ali Ayesha S, Dicker Adam P, Flanders Adam E, Liem Spencer, Lombardo Joseph, Shi Wenyin, Shukla Gaurav, Griffith Brent, Poisson Laila M, Rogers Lisa R, Kotrotsou Aikaterini, Booth Thomas C, Jain Rajan, Lee Matthew, Mahajan Abhishek, Chakravarti Arnab, Palmer Joshua D, DiCostanzo Dominic, Fathallah-Shaykh Hassan, Cepeda Santiago, Santonocito Orazio Santo, Di Stefano Anna Luisa, Wiestler Benedikt, Melhem Elias R, Woodworth Graeme F, Tiwari Pallavi, Valdes Pablo, Matsumoto Yuji, Otani Yoshihiro, Imoto Ryoji, Aboian Mariam, Koizumi Shinichiro, Kurozumi Kazuhiko, Kawakatsu Toru, Alexander Kimberley, Satgunaseelan Laveniya, Rulseh Aaron M, Bagley Stephen J, Bilello Michel, Binder Zev A, Brem Steven, Desai Arati S, Lustig Robert A, Maloney Eileen, Prior Timothy, Amankulor Nduka, Nasrallah MacLean P, O'Rourke Donald M, Mohan Suyash, Davatzikos Christos

机构信息

Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, California, USA.

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

Neuro Oncol. 2025 May 15;27(4):1102-1115. doi: 10.1093/neuonc/noae260.

Abstract

BACKGROUND

Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.

METHODS

We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).

RESULTS

The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.

CONCLUSIONS

Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.

摘要

背景

胶质母细胞瘤(GBM)是最具侵袭性的成人原发性脑癌,具有显著的异质性,给患者管理、治疗规划和临床试验分层带来挑战。

方法

我们利用机器学习(ML),基于来自22个机构、3个大洲的2838名不同人口统计学特征患者的常规临床数据、磁共振成像(MRI)和分子检测指标,开发了一种高度可重复、个性化的预后评估和临床亚组划分系统。使用Kaplan-Meier分析(Cox比例模型和风险比[HR])将患者分为预后良好、中等和较差的亚组(I、II和III)。

结果

ML模型将患者分为不同的预后亚组,I-II亚组和I-III亚组之间的HR分别为1.62(95%CI:1.43-1.84,P<0.001)和3.48(95%CI:2.94-4.11,P<0.001)。对影像特征的分析揭示了几种具有独特预后价值的肿瘤特性,支持了在不同队列中建立可推广的预后分类系统的可行性。

结论

我们的ML模型具有广泛的可重复性和在线可及性,利用常规影像数据而非复杂成像方案。该平台为GBM患者的个性化管理和临床试验分层提供了一种独特方法。

相似文献

本文引用的文献

9
Overview of prognostic factors in adult gliomas.成人胶质瘤预后因素概述。
Ann Palliat Med. 2021 Jan;10(1):863-874. doi: 10.21037/apm-20-640. Epub 2020 Aug 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验