Akbari Hamed, Bakas Spyridon, Sako Chiharu, Fathi Kazerooni Anahita, Villanueva-Meyer Javier, Garcia Jose A, Mamourian Elizabeth, Liu Fang, Cao Quy, Shinohara Russell T, Baid Ujjwal, Getka Alexander, Pati Sarthak, Singh Ashish, Calabrese Evan, Chang Susan, Rudie Jeffrey, Sotiras Aristeidis, LaMontagne Pamela, Marcus Daniel S, Milchenko Mikhail, Nazeri Arash, Balana Carmen, Capellades Jaume, Puig Josep, Badve Chaitra, Barnholtz-Sloan Jill S, Sloan Andrew E, Vadmal Vachan, Waite Kristin, Ak Murat, Colen Rivka R, Park Yae Won, Ahn Sung Soo, Chang Jong Hee, Choi Yoon Seong, Lee Seung-Koo, Alexander Gregory S, Ali Ayesha S, Dicker Adam P, Flanders Adam E, Liem Spencer, Lombardo Joseph, Shi Wenyin, Shukla Gaurav, Griffith Brent, Poisson Laila M, Rogers Lisa R, Kotrotsou Aikaterini, Booth Thomas C, Jain Rajan, Lee Matthew, Mahajan Abhishek, Chakravarti Arnab, Palmer Joshua D, DiCostanzo Dominic, Fathallah-Shaykh Hassan, Cepeda Santiago, Santonocito Orazio Santo, Di Stefano Anna Luisa, Wiestler Benedikt, Melhem Elias R, Woodworth Graeme F, Tiwari Pallavi, Valdes Pablo, Matsumoto Yuji, Otani Yoshihiro, Imoto Ryoji, Aboian Mariam, Koizumi Shinichiro, Kurozumi Kazuhiko, Kawakatsu Toru, Alexander Kimberley, Satgunaseelan Laveniya, Rulseh Aaron M, Bagley Stephen J, Bilello Michel, Binder Zev A, Brem Steven, Desai Arati S, Lustig Robert A, Maloney Eileen, Prior Timothy, Amankulor Nduka, Nasrallah MacLean P, O'Rourke Donald M, Mohan Suyash, Davatzikos Christos
Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, California, USA.
Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Neuro Oncol. 2025 May 15;27(4):1102-1115. doi: 10.1093/neuonc/noae260.
Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.
We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).
The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.
Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
胶质母细胞瘤(GBM)是最具侵袭性的成人原发性脑癌,具有显著的异质性,给患者管理、治疗规划和临床试验分层带来挑战。
我们利用机器学习(ML),基于来自22个机构、3个大洲的2838名不同人口统计学特征患者的常规临床数据、磁共振成像(MRI)和分子检测指标,开发了一种高度可重复、个性化的预后评估和临床亚组划分系统。使用Kaplan-Meier分析(Cox比例模型和风险比[HR])将患者分为预后良好、中等和较差的亚组(I、II和III)。
ML模型将患者分为不同的预后亚组,I-II亚组和I-III亚组之间的HR分别为1.62(95%CI:1.43-1.84,P<0.001)和3.48(95%CI:2.94-4.11,P<0.001)。对影像特征的分析揭示了几种具有独特预后价值的肿瘤特性,支持了在不同队列中建立可推广的预后分类系统的可行性。
我们的ML模型具有广泛的可重复性和在线可及性,利用常规影像数据而非复杂成像方案。该平台为GBM患者的个性化管理和临床试验分层提供了一种独特方法。