Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
Med Phys. 2024 Nov;51(11):8168-8178. doi: 10.1002/mp.17328. Epub 2024 Aug 1.
Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high-contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image-guided radiation therapy (IGRT) process.
While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L-DM) framework.
Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT-based radiotherapy. dCBCT images were used as the constraint for the L-DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L-DM were compared to three selected mainstream generation models.
We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L-DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L-DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L-DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively.
The proposed L-DM significantly improved sCT image quality compared to the pre-correction CBCT and three mainstream generative models. Our model can benefit CBCT-based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.
尽管锥形束计算机断层扫描(CBCT)的分辨率低于计划 CT(pCT),但其剂量较低、高对比度分辨率较高且扫描时间较短,支持其在临床应用中广泛使用,特别是在确保图像引导放射治疗(IGRT)过程中患者定位准确方面。
虽然 CBCT 对 IGRT 至关重要,但严重的条纹和散射伪影会影响 CBCT 图像质量。肿瘤随呼吸运动的移动也会降低 CBCT 的分辨率。为了提高 CBCT 的图像质量,我们提出了一种肺扩散模型(L-DM)框架。
我们提出的算法基于在 pCT 和变形 CBCT(dCBCT)图像对上训练的条件扩散模型,从 dCBCT 图像合成肺 CT 图像,并受益于基于 CBCT 的放射治疗。dCBCT 图像用作 L-DM 的约束条件。所提出的 L-DM 生成的合成 CT(sCT)图像的图像质量和亨氏单位(HU)值与三个选定的主流生成模型进行了比较。
我们在一个机构肺癌数据集和一个选定的公共数据集验证了我们的模型。我们的 L-DM 在平均绝对误差(MAE)、峰值信噪比(PSNR)、归一化互相关(NCC)和结构相似性指数度量(SSIM)四个指标上都有显著的改进。在我们的机构数据集,我们提出的 L-DM 将 MAE 从 101.47 降低到 37.87 HU,将 PSNR 从 24.97 提高到 29.89 dB,将 NCC 从 0.81 提高到 0.97,将 SSIM 从 0.80 提高到 0.93。在公共数据集,我们提出的 L-DM 将 MAE 从 173.65 降低到 58.95 HU,同时将 PSNR、NCC 和 SSIM 从 13.07 提高到 24.05 dB、0.68 提高到 0.94 和 0.41 提高到 0.88。
与预校正 CBCT 和三个主流生成模型相比,所提出的 L-DM 显著提高了 sCT 图像质量。我们的模型可以受益于基于 CBCT 的 IGRT 和其他潜在的临床应用,因为它提高了 HU 的准确性并减少了输入 CBCT 图像的伪影。