Suppr超能文献

一种受海马体记忆机制启发的可扩展强化学习框架,用于高效的情境和序列决策。

A scalable reinforcement learning framework inspired by hippocampal memory mechanisms for efficient contextual and sequential decision making.

作者信息

Poursiami Hamed, Moshruba Ayana, Cooper Keiland W, Gobin Derek, Kaiser Md Abdullah-Al, Singh Ankur, Noor Rouhan, Shahbaba Babak, Jaiswal Akhilesh, Fortin Norbert J, Parsa Maryam

机构信息

Department of Electrical and Computer Engineering, George Mason University, Virginia, USA.

Center for the Neurobiology of Learning and Memory, UC Irvine, Irvine, USA.

出版信息

Sci Rep. 2025 Jul 12;15(1):25221. doi: 10.1038/s41598-025-10586-x.

Abstract

Efficient decision-making in context-dependent, sequential tasks remains a fundamental challenge in reinforcement learning (RL). Inspired by the function of the brain's hippocampal system, we introduce Hippocampal-Augmented Memory Integration (HAMI), a biologically inspired memory-based RL framework that leverages symbolic indexing, hierarchical memory refinement, and structured episodic retrieval to enhance both learning efficiency and adaptability. We also propose Hierarchical Contextual Sequences (HiCoS), a structured RL environment grounded in neuroscience studies on episodic and sequence memory and context-driven decision-making, which serves as a controlled testbed for evaluating biologically inspired memory-based decision-making systems. Our experimental results demonstrate that HAMI achieves high decision accuracy and improved sample efficiency while maintaining low memory utilization. HAMI's architecture exhibits significantly lower inference latency than baseline memory-based methods, and its structured retrieval is well-suited for further hardware acceleration with non-volatile memory (NVM)-based content-addressable memory (CAM). By integrating biologically inspired memory mechanisms with structured symbolic representations, HAMI provides a scalable and efficient memory-based RL framework for tackling context-dependent sequential tasks.

摘要

在上下文相关的序列任务中进行高效决策仍然是强化学习(RL)中的一个基本挑战。受大脑海马体系统功能的启发,我们引入了海马体增强记忆整合(HAMI),这是一个受生物学启发的基于记忆的强化学习框架,它利用符号索引、分层记忆细化和结构化情节检索来提高学习效率和适应性。我们还提出了分层上下文序列(HiCoS),这是一个基于情景和序列记忆以及上下文驱动决策的神经科学研究构建的结构化强化学习环境,它作为一个受控测试平台,用于评估受生物学启发的基于记忆的决策系统。我们的实验结果表明,HAMI在保持低内存利用率的同时,实现了高决策准确性和提高的样本效率。HAMI的架构比基于记忆的基线方法具有显著更低的推理延迟,并且其结构化检索非常适合使用基于非易失性存储器(NVM)的内容可寻址存储器(CAM)进行进一步的硬件加速。通过将受生物学启发的记忆机制与结构化符号表示相结合,HAMI为处理上下文相关的序列任务提供了一个可扩展且高效的基于记忆的强化学习框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15c2/12255686/c2e78a921c77/41598_2025_10586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验