Li Pengbo, Huo Diwei, Li Donglong, Si Minggui, Xu Ruicong, Ma Xuebin, Wang Xunwei, Wang Keliang
Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
J Invest Surg. 2024 Dec;37(1):2435045. doi: 10.1080/08941939.2024.2435045. Epub 2024 Dec 13.
This project aims to shed light on how various treatment approaches affect RCC patients' chances of survival and create a prediction model for them.
Data from the Surveillance, Epidemiology, and End Results database were used in this investigation. OS and RCSS after radiation, chemotherapy, and surgery were investigated using the Kaplan-Meier approach. Fourteen factors, including gender, age, race, and others, were subjected to univariate and multivariate COX analyses. Predicting RCSS at three, five, or ten years is the main goal. Predicting OS at three, five, or ten years is the secondary endpoint. Cox analyses, both univariate and multivariate, were used to identify prognostic factors. Furthermore, a nomogram was developed to precisely forecast patient survival rates at 3-, 5-, and 10-year intervals. DCA, calibration curves, and ROC were used to assess the nomogram's efficacy.
Kaplan-Meier analysis revealed that PN was associated with better survival compared to RN for tumors ≤10 cm. Cox analysis identified 10 independent prognostic factors. These variables included gender, age, race, histological type, histological grade, AJCC stage, N stage, T stage, M stage, and surgical type. Based on these variables, a nomogram for OS and RCSS prediction was created.
PN is advised over RN for RCC patients whose tumors are less than 10 cm in diameter since it offers more advantages. The combined nomogram model, which is based on clinicopathological characteristics, therapy data, and demographic variables, may be used to predict the survival of RCC patients and perform prognostic and survival analysis with accuracy.
本项目旨在阐明各种治疗方法如何影响肾癌患者的生存机会,并为他们创建一个预测模型。
本研究使用了监测、流行病学和最终结果数据库中的数据。采用Kaplan-Meier方法研究放疗、化疗和手术后的总生存期(OS)和复发后癌症特异性生存期(RCSS)。对包括性别、年龄、种族等在内的14个因素进行单变量和多变量COX分析。主要目标是预测3年、5年或10年的RCSS。次要终点是预测3年、5年或10年的OS。单变量和多变量COX分析用于确定预后因素。此外,还开发了一个列线图,以精确预测患者在3年、5年和10年间隔的生存率。使用决策曲线分析(DCA)、校准曲线和受试者工作特征曲线(ROC)来评估列线图的有效性。
Kaplan-Meier分析显示,对于直径≤10 cm的肿瘤,与根治性肾切除术(RN)相比,肾部分切除术(PN)与更好的生存率相关。COX分析确定了10个独立的预后因素。这些变量包括性别、年龄、种族、组织学类型、组织学分级、美国癌症联合委员会(AJCC)分期、N分期、T分期、M分期和手术类型。基于这些变量,创建了一个用于OS和RCSS预测的列线图。
对于直径小于10 cm的肾癌患者,建议采用PN而非RN,因为它具有更多优势。基于临床病理特征、治疗数据和人口统计学变量的联合列线图模型可用于预测肾癌患者的生存情况,并准确进行预后和生存分析。