Suppr超能文献

Gpmb-yolo:一种用于医学成像中高效血细胞检测的轻量级模型。

Gpmb-yolo: a lightweight model for efficient blood cell detection in medical imaging.

作者信息

Shi Chenyang, Zhu Donglin, Zhou Changjun, Cheng Shi, Zou Chengye

机构信息

School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China.

School of Computer Science, Shaanxi Normal University, Xi'an, 710119 China.

出版信息

Health Inf Sci Syst. 2024 Mar 11;12(1):24. doi: 10.1007/s13755-024-00285-8. eCollection 2024 Dec.

Abstract

In the field of biomedical science, blood cell detection in microscopic images is crucial for aiding physicians in diagnosing blood-related diseases and plays a pivotal role in advancing medicine toward more precise and efficient treatment directions. Addressing the time-consuming and error-prone issues of traditional manual detection methods, as well as the challenge existing blood cell detection technologies face in meeting both high accuracy and real-time requirements, this study proposes a lightweight blood cell detection model based on YOLOv8n, named GPMB-YOLO. This model utilizes advanced lightweight strategies and PGhostC2f design, effectively reducing model complexity and enhancing detection speed. The integration of the simple parameter-free attention mechanism (SimAM) significantly enhances the model's feature extraction ability. Furthermore, we have designed a multidimensional attention-enhanced bidirectional feature pyramid network structure, MCA-BiFPN, optimizing the effect of multi-scale feature fusion. And use genetic algorithms for hyperparameter optimization, further improving detection accuracy. Experimental results validate the effectiveness of the GPMB-YOLO model, which realized a 3.2% increase in mean Average Precision (mAP) compared to the baseline YOLOv8n model and a marked reduction in model complexity. Furthermore, we have developed a blood cell detection system and deployed the model for application. This study serves as a valuable reference for the efficient detection of blood cells in medical images.

摘要

在生物医学科学领域,显微图像中的血细胞检测对于帮助医生诊断血液相关疾病至关重要,并且在推动医学朝着更精确、高效的治疗方向发展方面发挥着关键作用。针对传统人工检测方法耗时且容易出错的问题,以及现有血细胞检测技术在满足高精度和实时性要求方面面临的挑战,本研究提出了一种基于YOLOv8n的轻量级血细胞检测模型,名为GPMB - YOLO。该模型采用先进的轻量级策略和PGhostC2f设计,有效降低了模型复杂度并提高了检测速度。简单无参数注意力机制(SimAM)的集成显著增强了模型的特征提取能力。此外,我们设计了一种多维注意力增强双向特征金字塔网络结构MCA - BiFPN,优化了多尺度特征融合的效果。并使用遗传算法进行超参数优化,进一步提高检测精度。实验结果验证了GPMB - YOLO模型的有效性,与基线YOLOv8n模型相比,其平均精度均值(mAP)提高了3.2%,且模型复杂度显著降低。此外,我们开发了一个血细胞检测系统并将该模型进行了应用部署。本研究为医学图像中血细胞的高效检测提供了有价值的参考。

相似文献

本文引用的文献

3
Platelet Detection Based on Improved YOLO_v3.基于改进YOLO_v3的血小板检测
Cyborg Bionic Syst. 2022 Sep 14;2022:9780569. doi: 10.34133/2022/9780569. eCollection 2022.
5
The Origin of the Microscope.显微镜的起源。
Ann Med Hist. 1939 Jan;1(1):30-44.
8
Machine learning approach of automatic identification and counting of blood cells.血细胞自动识别与计数的机器学习方法。
Healthc Technol Lett. 2019 Jul 17;6(4):103-108. doi: 10.1049/htl.2018.5098. eCollection 2019 Aug.
9
Efficient Epileptic Seizure Prediction Based on Deep Learning.基于深度学习的高效癫痫发作预测。
IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):804-813. doi: 10.1109/TBCAS.2019.2929053. Epub 2019 Jul 17.
10
Object Detection With Deep Learning: A Review.基于深度学习的目标检测研究综述。
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232. doi: 10.1109/TNNLS.2018.2876865. Epub 2019 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验