Garza Rolando Efraín Ramírez, Rodríguez de Luna Sara Luisa, Gómez Idalia
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Lab. Mat. I, Av. Pedro de Alba s/n, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
Heliyon. 2024 May 23;10(11):e31144. doi: 10.1016/j.heliyon.2024.e31144. eCollection 2024 Jun 15.
Photoluminescence (PL) spectroscopy is one of the best methods to detect molecules due to its easiness, fast time of analysis and high sensitivity. In addition, zinc oxide (ZnO) possesses good optical properties and particularly PL emission in these materials have been exploited for their potential use as photocatalyst, light harvesting and photosensor. These PL properties enhance when graphene quantum dots (GQD) are added to ZnO. For these reasons, we investigated the PL performance of ZnO-GQD nanocomposites. In one experiment we evaluated the PL emission of solid samples ZnO and ZnO-GQD. In a second experiment, these samples were also evaluated in aqueous phase to investigate the HO effect during an experiment lasting 170 minutes. Both experiments displayed six peaks and they were related to the same PL emission source. The PL emission peak around 415 nm was found to be principal source where GQD are interacting. By varying the GQD amount to low, medium, and high concentration, the effect of HO acted consequently, altering the PL emission during experiment in aqueous phase. An oxygen rich environment (ORE) occurred due to HO which oxides the ZnO surface. Low GQD concentration resulted affected by an ORE weakening the GQD-ZnO contact, decreasing PL emission. In high GQD concentration, HO induced GQD to reach the ZnO surface, increasing the PL emission. Only medium GQD concentration prevented oxidation of ZnO and maintained the PL emission intensity constant. When HO concentration increased, for the medium GQD concentration, an excess of charge by peroxides inhibited the charge transfer from GQD to ZnO. This inhibition produces a quenching of the PL emission.
光致发光(PL)光谱法因其简便性、快速分析时间和高灵敏度,是检测分子的最佳方法之一。此外,氧化锌(ZnO)具有良好的光学性质,特别是这些材料中的PL发射已被用于其作为光催化剂、光捕获和光传感器的潜在用途。当将石墨烯量子点(GQD)添加到ZnO中时,这些PL性质会增强。基于这些原因,我们研究了ZnO-GQD纳米复合材料的PL性能。在一个实验中,我们评估了固体样品ZnO和ZnO-GQD的PL发射。在第二个实验中,还在水相中评估了这些样品,以研究在持续170分钟的实验过程中的羟基(HO)效应。两个实验都显示出六个峰,并且它们与相同的PL发射源有关。发现415nm左右的PL发射峰是GQD相互作用的主要来源。通过将GQD的量变化为低、中和高浓度,HO的作用相应地改变了水相实验期间的PL发射。由于HO氧化ZnO表面而产生了富氧环境(ORE)。低GQD浓度受到ORE的影响,削弱了GQD-ZnO接触,降低了PL发射。在高GQD浓度下,HO诱导GQD到达ZnO表面,增加了PL发射。只有中等GQD浓度可防止ZnO氧化并保持PL发射强度恒定。当HO浓度增加时,对于中等GQD浓度,过氧化物产生的过量电荷抑制了从GQD到ZnO的电荷转移。这种抑制作用导致PL发射猝灭。