Shafique Rubia, Rani Malika, Janjua Naveed Kausar, Arshad Maryam, Batool Kiran, Akram Mariam, Ibrahim Akram
Department of physics, The Women University Multan, Punjab, Pakistan.
Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Heliyon. 2024 Nov 26;10(23):e40702. doi: 10.1016/j.heliyon.2024.e40702. eCollection 2024 Dec 15.
This study reports novel three-step electrochemical fabrication of CoCrO/graphene-oxide nanocomposite on glassy carbon electrode including sequential synthesis of graphene-oxide using modified Hummer's method, CoCrO nanoparticles using sol-gel method and the cost-effective co-precipitation technique for nanocomposite formation. The resulting nanocomposite was subjected to comprehensive analytical and morphological analysis. X-ray diffractometry (XRD) confirms nanocomposite formation with reduced average crystallite size value of 26.9 nm whereas SEM indicates spherical grains existence within nanocomposite. Energy-dispersive X-ray spectrometry (EDS) confirms no impurity peak existence whereas Raman spectroscopy clearly indicated D and G band existence at 1345 and 1587 cm respectively. Photoluminescent spectra reveals decreasing trend in band gap value about 3.49 eV. The electrochemical properties of CoCrO/graphene-oxide nanocomposite electrode explored, showcasing remarkable capacitance with a surface area of merely 0.068 cm, 574.8 F/g specific capacitance in alkaline 1M KOH and 488.6 F/g specific capacitance in acidic 0.1M HSO electrolyte. Moreover, synthesized nanocomposite demonstrates remarkable electrochemical stability resulting capacitance retention about 95 % after 100 cycles in 1M KOH electrolyte. GCD analysis reveals impressive power and energy density values of 2489 W/kg and 14.88 Wh/kg respectively. These outstanding properties make the nanocomposite an attractive material for next-generation supercapacitors and energy storage solutions.
本研究报告了一种在玻碳电极上三步电化学制备CoCrO/氧化石墨烯纳米复合材料的新方法,该方法包括使用改进的Hummer法依次合成氧化石墨烯、使用溶胶 - 凝胶法合成CoCrO纳米颗粒以及采用经济高效的共沉淀技术形成纳米复合材料。对所得纳米复合材料进行了全面的分析和形态分析。X射线衍射仪(XRD)证实形成了纳米复合材料,平均微晶尺寸减小至26.9 nm,而扫描电子显微镜(SEM)表明纳米复合材料中存在球形颗粒。能量色散X射线光谱仪(EDS)证实不存在杂质峰,而拉曼光谱清楚地表明在1345 cm和1587 cm处分别存在D带和G带。光致发光光谱显示带隙值呈下降趋势,约为3.49 eV。对CoCrO/氧化石墨烯纳米复合电极的电化学性能进行了探索,在仅0.068 cm²的表面积下展现出显著的电容,在碱性1M KOH电解液中的比电容为574.8 F/g,在酸性0.1M H₂SO₄电解液中的比电容为488.6 F/g。此外,合成的纳米复合材料表现出显著的电化学稳定性,在1M KOH电解液中循环100次后电容保持率约为95%。恒流充放电(GCD)分析显示功率密度和能量密度分别达到令人印象深刻的2489 W/kg和14.88 Wh/kg。这些优异的性能使该纳米复合材料成为下一代超级电容器和储能解决方案的有吸引力的材料。