Saleem Musharafa, Hussain Majid
Department of Mathematics, University of Management and Technology, Sialkot Campus 51310, Pakistan.
Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore 54890, Pakistan.
Heliyon. 2024 Apr 16;10(8):e29568. doi: 10.1016/j.heliyon.2024.e29568. eCollection 2024 Apr 30.
The current research presents a mathematical model to study the flow of a non-Newtonian magnetohydrodynamics (MHD) Casson-Carreau nanofluid (CCNF) over a stretching porous surface, considering mass and heat transport rates with Stefan blowing, non-linear thermal radiation, heat source-sink, chemical reaction, thermophoretic and Brownian motions, convective heating, Joule heating, motile microorganisms, and bio-convection. The presence of microorganisms is utilized to control the suspension of nanomaterials within the nanofluid. The current flow model has been rendered by the boundary layer approximation and we get the highly nonlinear partial differential equations (PDEs). These nonlinear PDEs are simplified by the novel Lie group theoretic method. The one-parameter Lie scaling method simplified the PDEs and convert it into the ordinary differential equations (ODEs). Numerical solutions for these ODEs are obtained using the bvp4c scheme built-in function in MATLAB, ensuring reliable outcomes for temperature, velocity, concentration, and motile microorganism density profiles. The numerical results are presented through graphs and compared with available data, showing good agreement. These numerical outcomes reveal several important flow characteristics. Rates of change for are 0.0007 and 0.0005, and for Ω, they are -0.0754 and -0.0536, respectively. Similarly, the rate of change for in both models is -0.002 and -0.0002. Analysis shows a positive impact of the bioconvection Rayleigh number in both models, notably higher for the Casson fluid compared to the Carreau fluid model. Buoyancy ratio parameter exhibits consistent rates of change, while the reduction in impact is more pronounced for the Casson fluid model in the case of the mixed bioconvection parameter. The mixed bio-convection parameter reduces momentum velocity for both Casson and Carreau fluids, whereas the Darcy parameter boosts fluid velocity. As the Newtonian heating parameter increases, the temperature velocity distribution of both fluids also increases. The concentration profile of both Casson-Carreau fluid phases declines as the heat source-sink parameter and Schmidt number increase. Microbial velocity shows a decrease with increasing values, whereas the opposite trend is observed for the Peclet number .
当前的研究提出了一个数学模型,用于研究非牛顿磁流体动力学(MHD)Casson-Carreau纳米流体(CCNF)在拉伸多孔表面上的流动,同时考虑了具有斯蒂芬吹入、非线性热辐射、热源-热汇、化学反应、热泳和布朗运动、对流加热、焦耳加热、活动微生物以及生物对流的质量和热传输速率。利用微生物的存在来控制纳米材料在纳米流体中的悬浮。当前的流动模型通过边界层近似得到,我们得到了高度非线性的偏微分方程(PDEs)。这些非线性PDEs通过新颖的李群理论方法进行简化。单参数李缩放方法简化了PDEs并将其转换为常微分方程(ODEs)。使用MATLAB中内置的bvp4c方案函数获得这些ODEs的数值解,确保温度、速度、浓度和活动微生物密度分布的可靠结果。数值结果通过图表呈现,并与现有数据进行比较,显示出良好的一致性。这些数值结果揭示了几个重要的流动特性。对于 ,变化率分别为0.0007和0.0005,对于Ω,变化率分别为-0.0754和-0.0536。同样,在两个模型中,对于 的变化率分别为-0.002和-0.0002。分析表明,生物对流瑞利数在两个模型中都有积极影响,特别是Casson流体的影响比Carreau流体模型更高。浮力比参数表现出一致的变化率,而在混合生物对流参数的情况下,Casson流体模型的影响降低更为明显。混合生物对流参数降低了Casson和Carreau流体的动量速度,而达西参数提高了流体速度。随着牛顿加热参数的增加,两种流体的温度速度分布也增加。随着热源-热汇参数和施密特数的增加,Casson-Carreau流体两相的浓度分布下降。微生物速度随着 值的增加而降低,而对于佩克莱数 则观察到相反的趋势。