Suppr超能文献

磁共振图像重建的优化方法:关键模型与优化算法

Optimization Methods for Magnetic Resonance Image Reconstruction: Key Models and Optimization Algorithms.

作者信息

Fessler Jeffrey A

机构信息

EECS Department, Univ. of Michigan.

出版信息

IEEE Signal Process Mag. 2020 Jan;37(1):33-40. doi: 10.1109/MSP.2019.2943645. Epub 2020 Jan 17.

Abstract

The development of compressed sensing methods for magnetic resonance (MR) image reconstruction led to an explosion of research on models and optimization algorithms for MR imaging (MRI). Roughly 10 years after such methods first appeared in the MRI literature, the U.S. Food and Drug Administration (FDA) approved certain compressed sensing methods for commercial use, making compressed sensing a clinical success story for MRI. This review paper summarizes several key models and optimization algorithms for MR image reconstruction, including both the type of methods that have FDA approval for clinical use, as well as more recent methods being considered in the research community that use data-adaptive regularizers. Many algorithms have been devised that exploit the structure of the system model and regularizers used in MRI; this paper strives to collect such algorithms in a single survey.

摘要

用于磁共振(MR)图像重建的压缩感知方法的发展引发了对MR成像(MRI)模型和优化算法研究的热潮。在这类方法首次出现在MRI文献中大约10年后,美国食品药品监督管理局(FDA)批准了某些压缩感知方法用于商业用途,使压缩感知成为MRI的一个临床成功案例。这篇综述文章总结了几种用于MR图像重建的关键模型和优化算法,包括已获FDA批准可用于临床的方法类型,以及研究界正在考虑的使用数据自适应正则化器的最新方法。已经设计出许多利用MRI中使用的系统模型和正则化器结构的算法;本文力求在一次综述中收集此类算法。

相似文献

6
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.

引用本文的文献

5
Advancements in Intelligent Sensing Technologies for Food Safety Detection.用于食品安全检测的智能传感技术进展
Research (Wash D C). 2025 Jun 2;8:0713. doi: 10.34133/research.0713. eCollection 2025.
9
UNCERTAINTY-GUIDED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION VIA CYCLIC MEASUREMENT CONSISTENCY.通过循环测量一致性实现不确定性引导的物理驱动深度学习重建
Proc IEEE Int Conf Acoust Speech Signal Process. 2024 Apr;2024:13441-13445. doi: 10.1109/icassp48485.2024.10447594. Epub 2024 Mar 18.

本文引用的文献

1
Adaptive Restart of the Optimized Gradient Method for Convex Optimization.用于凸优化的优化梯度法的自适应重启
J Optim Theory Appl. 2018 Jul;178(1):240-263. doi: 10.1007/s10957-018-1287-4. Epub 2018 May 7.
3
Learning Joint-Sparse Codes for Calibration-Free Parallel MR Imaging.学习无定标并行磁共振成像的联合稀疏编码。
IEEE Trans Med Imaging. 2018 Jan;37(1):251-261. doi: 10.1109/TMI.2017.2746086. Epub 2017 Aug 29.
5
Efficient Algorithms for Convolutional Sparse Representations.卷积稀疏表示的高效算法。
IEEE Trans Image Process. 2016 Jan;25(1):301-15. doi: 10.1109/TIP.2015.2495260. Epub 2015 Oct 27.
9
Magnetic resonance fingerprinting.磁共振指纹成像。
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.
10
Undersampled MRI reconstruction with patch-based directional wavelets.基于补丁的方向小波的欠采样 MRI 重建。
Magn Reson Imaging. 2012 Sep;30(7):964-77. doi: 10.1016/j.mri.2012.02.019. Epub 2012 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验