Chiou Jian-Geng, Chou Todd Kwang-Tao, Garcia-Ojalvo Jordi, Süel Gürol M
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA.
Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
iScience. 2024 Nov 13;27(12):111386. doi: 10.1016/j.isci.2024.111386. eCollection 2024 Dec 20.
Developmental patterning is a shared feature across biological systems ranging from vertebrates to bacterial biofilms. While vertebrate patterning benefits from well-controlled homeostatic environments, bacterial biofilms can grow in diverse physical contexts. What mechanisms provide developmental robustness under diverse environments remains an open question. We show that a native clock-and-wavefront mechanism robustly segments biofilms in both solid-air and solid-liquid interfaces. Biofilms grown under these distinct physical conditions differ 4-fold in size yet exhibit robust segmentation. The segmentation pattern scaled with biofilm growth rate in a mathematically predictable manner independent of habitat conditions. We show that scaling arises from the coupling between wavefront speed and biofilm growth rate. In contrast to the complexity of scaling mechanisms in vertebrates, our data suggests that the minimal bacterial clock-and-wavefront mechanism is intrinsically robust and scales in real time. Consequently, bacterial biofilms robustly segment under diverse conditions without requiring cell-to-cell signaling to track system size.
发育模式是从脊椎动物到细菌生物膜等生物系统的一个共同特征。脊椎动物的模式形成得益于控制良好的稳态环境,而细菌生物膜可以在多种物理环境中生长。在不同环境下提供发育稳健性的机制仍然是一个悬而未决的问题。我们表明,一种天然的时钟和波前机制能够在固-气和固-液界面中稳健地分割生物膜。在这些不同物理条件下生长的生物膜大小相差4倍,但仍表现出稳健的分割。分割模式以数学上可预测的方式随生物膜生长速率缩放,与栖息地条件无关。我们表明,缩放源于波前速度和生物膜生长速率之间 的耦合。与脊椎动物缩放机制的复杂性不同,我们的数据表明,最小的细菌时钟和波前机制本质上是稳健的,并实时缩放。因此,细菌生物膜在不同条件下都能稳健地分割,无需细胞间信号传导来跟踪系统大小。