Ullah Faizan, Maqbool Maria, Sheikh Nadeem S, Bayach Imene, Ayub Khurshid
Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
Department of Chemistry, COMSATS University, Abbottabad Campus, 22060, Islamabad, KPK, Pakistan.
Sci Rep. 2025 Aug 11;15(1):29386. doi: 10.1038/s41598-025-10388-1.
Here, the encapsulation behavior of Cucurbit[7]uril (CB[7]) is studied for six organic UV filters, i.e., benzophenone, homosalate, oxybenzone, dioxybenzone, sulisobenzone, and para aminobenzoic acid (PABA) using density functional theory (DFT). The thermodynamic stability of the designed systems is ensured by the values of interaction energies ranging from - 11.78 to -20.42 kcal/mol, with the highest value observed for dioxybenzone@CB[7]. Non-covalent interaction (NCI) analysis highlights the prevalence of van der Waals interactions in host-guest complexes, supported by quantum theory of atoms in molecule (QTAIM) analysis. The values of interaction energies of individual bonds in QTAIM analysis fall below 3 kcal/mol confirming the van der Waals interactions between the host and guest species. Frontier molecular orbital (FMO) and density of states (DOS) analyses indicate decreased energy gaps in the complexes compared to bare species, while natural bond orbital (NBO) analysis reveals charge transfer from host to guests with the highest observed for oxybenzone@CB[7] (-0.019|e|). Recovery time and desorption energy analysis highlight dioxybenzone@CB[7] as the most strongly adsorbed complex, while benzophenone@CB[7] being the least. The analysis also suggest a decrease in recovery time with increasing temperature (i.e., least for benzophenone@belt complex, i.e., 2.7[Formula: see text]10 s at 400 K). These findings illustrate CB[7] as an efficient host for encapsulating organic UV filters, offering a promising approach for reducing their negative ecological consequences.
在此,使用密度泛函理论(DFT)研究了葫芦[7]脲(CB[7])对六种有机紫外线过滤剂的包封行为,这六种过滤剂分别是二苯甲酮、胡莫柳酯、氧苯酮、二氧苯酮、舒利苯酮和对氨基苯甲酸(PABA)。设计体系的热力学稳定性由相互作用能的值保证,其范围为-11.78至-20.42千卡/摩尔,二氧苯酮@CB[7]的相互作用能值最高。非共价相互作用(NCI)分析突出了主客体复合物中范德华相互作用的普遍性,分子中的原子量子理论(QTAIM)分析也支持这一点。QTAIM分析中单个键的相互作用能值低于3千卡/摩尔,证实了主体和客体物种之间的范德华相互作用。前线分子轨道(FMO)和态密度(DOS)分析表明,与裸物种相比,复合物中的能隙减小,而自然键轨道(NBO)分析揭示了电荷从主体转移到客体,氧苯酮@CB[7]的电荷转移量最高(-0.019|e|)。恢复时间和解吸能分析突出了二氧苯酮@CB[7]是吸附最强的复合物,而二苯甲酮@CB[7]是吸附最弱的。分析还表明,恢复时间随温度升高而缩短(即二苯甲酮@带复合物最短,在400 K时为2.7×10秒)。这些发现表明CB[7]是一种用于包封有机紫外线过滤剂的有效主体,为减少其负面生态影响提供了一种有前景的方法。