Suppr超能文献

烧伤患儿血流感染预测的预防工具。

A PREVENTIVE TOOL FOR PREDICTING BLOODSTREAM INFECTIONS IN CHILDREN WITH BURNS.

机构信息

Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, Massachusetts.

Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

出版信息

Shock. 2023 Mar 1;59(3):393-399. doi: 10.1097/SHK.0000000000002075. Epub 2023 Jan 4.

Abstract

Introduction: Despite significant advances in pediatric burn care, bloodstream infections (BSIs) remain a compelling challenge during recovery. A personalized medicine approach for accurate prediction of BSIs before they occur would contribute to prevention efforts and improve patient outcomes. Methods: We analyzed the blood transcriptome of severely burned (total burn surface area [TBSA] ≥20%) patients in the multicenter Inflammation and Host Response to Injury ("Glue Grant") cohort. Our study included 82 pediatric (aged <16 years) patients, with blood samples at least 3 days before the observed BSI episode. We applied the least absolute shrinkage and selection operator (LASSO) machine-learning algorithm to select a panel of biomarkers predictive of BSI outcome. Results: We developed a panel of 10 probe sets corresponding to six annotated genes ( ARG2 [ arginase 2 ], CPT1A [ carnitine palmitoyltransferase 1A ], FYB [ FYN binding protein ], ITCH [ itchy E3 ubiquitin protein ligase ], MACF1 [ microtubule actin crosslinking factor 1 ], and SSH2 [ slingshot protein phosphatase 2 ]), two uncharacterized ( LOC101928635 , LOC101929599 ), and two unannotated regions. Our multibiomarker panel model yielded highly accurate prediction (area under the receiver operating characteristic curve, 0.938; 95% confidence interval [CI], 0.881-0.981) compared with models with TBSA (0.708; 95% CI, 0.588-0.824) or TBSA and inhalation injury status (0.792; 95% CI, 0.676-0.892). A model combining the multibiomarker panel with TBSA and inhalation injury status further improved prediction (0.978; 95% CI, 0.941-1.000). Conclusions: The multibiomarker panel model yielded a highly accurate prediction of BSIs before their onset. Knowing patients' risk profile early will guide clinicians to take rapid preventive measures for limiting infections, promote antibiotic stewardship that may aid in alleviating the current antibiotic resistance crisis, shorten hospital length of stay and burden on health care resources, reduce health care costs, and significantly improve patients' outcomes. In addition, the biomarkers' identity and molecular functions may contribute to developing novel preventive interventions.

摘要

介绍

尽管儿科烧伤护理取得了重大进展,但血流感染(BSI)在康复期间仍然是一个巨大的挑战。在感染发生之前,采用个性化医疗方法进行准确预测,将有助于预防工作并改善患者的预后。

方法

我们分析了多中心炎症和宿主对损伤的反应(“Glue Grant”)队列中严重烧伤(烧伤总面积[TBSA]≥20%)患者的血液转录组。我们的研究包括 82 名儿科患者(年龄<16 岁),在观察到 BSI 发作之前至少 3 天采集血液样本。我们应用最小绝对收缩和选择算子(LASSO)机器学习算法来选择一组预测 BSI 结果的生物标志物。

结果

我们开发了一组由 10 个探针组成的面板,对应于六个注释基因(ARG2[精氨酸酶 2]、CPT1A[肉碱棕榈酰转移酶 1A]、FYB[FYN 结合蛋白]、ITCH[痒 E3 泛素蛋白连接酶]、MACF1[微管肌动蛋白交联因子 1]和 SSH2[弹弓蛋白磷酸酶 2])、两个未鉴定的基因(LOC101928635、LOC101929599)和两个未注释的区域。与 TBSA(0.708;95%置信区间[CI],0.588-0.824)或 TBSA 和吸入性损伤状态(0.792;95%CI,0.676-0.892)模型相比,我们的多生物标志物面板模型具有更高的预测准确性(曲线下的接收者操作特征面积,0.938;95%CI,0.881-0.981)。结合多生物标志物面板、TBSA 和吸入性损伤状态的模型进一步提高了预测精度(0.978;95%CI,0.941-1.000)。

结论

多生物标志物面板模型在感染发生前对 BSI 进行了高度准确的预测。早期了解患者的风险概况将指导临床医生迅速采取预防措施以限制感染,促进抗生素管理,这可能有助于缓解当前的抗生素耐药性危机,缩短住院时间和医疗资源负担,降低医疗成本,并显著改善患者的预后。此外,这些生物标志物的身份和分子功能可能有助于开发新的预防干预措施。

相似文献

1
9
Long term mortality in critically ill burn survivors.重症烧伤幸存者的长期死亡率。
Burns. 2017 Sep;43(6):1155-1162. doi: 10.1016/j.burns.2017.05.010. Epub 2017 Jun 9.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验