Zhou Yangtao, Chu Hua, Li Qingshan, Li Jianan, Zhang Shuai, Zhu Feifei, Hu Jingzhao, Wang Luqiao, Yang Wanqiang
School of Computer Science and Technology, Xidian University, Xi'an, 710071, China; Intelligent Financial Software Engineering New Technology Joint Laboratory, Xidian University, Xi'an, 710071, China.
Intelligent Financial Software Engineering New Technology Joint Laboratory, Xidian University, Xi'an, 710071, China; Shanghai Fairyland Software Corp., Ltd., Shanghai, 200233, China.
Neural Netw. 2025 Apr;184:107001. doi: 10.1016/j.neunet.2024.107001. Epub 2024 Dec 5.
Next basket recommendation (NBR) is an essential task within the realm of recommendation systems and is dedicated to the anticipation of user preferences in the next moment based on the analysis of users' historical sequences of engaged baskets. Current NBR models utilise unique identity (ID) information to represent distinct users and items and focus on capturing the dynamic preferences of users through sequential encoding techniques such as recurrent neural networks and hierarchical time decay modelling, which have dominated the NBR field more than a decade. However, these models exhibit two significant limitations, resulting in suboptimal representations for both users and items. First, the dependence on unique ID information for the derivation of user and item representations ignores the rich semantic relations that interweave the items. Second, the majority of NBR models remain bound to model an individual user's historical basket sequence, thereby neglecting the broader vista of global collaborative relations among users and items. To address these limitations, we introduce a dual-tower model with semantic perception and timespan-coupled hypergraph for the NBR. It is carefully designed to integrate semantic and collaborative relations into both user and item representations. Specifically, to capture rich semantic relations effectively, we propose a hierarchical semantic attention mechanism with a large language model to integrate multi-aspect textual semantic features of items for basket representation learning. Simultaneously, to capture global collaborative relations explicitly, we design a timespan-coupled hypergraph convolutional network to efficiently model high-order structural connectivity on a hypergraph among users and items. Finally, a multi-objective joint optimisation loss is used to optimise the learning and integration of semantic and collaborative relations for recommendation. Comprehensive experiments on two public datasets demonstrate that our proposed model significantly outperforms the mainstream NBR models on two classical evaluation metrics, Recall and Normalised Discounted Cumulative Gain (NDCG).
下一个购物篮推荐(NBR)是推荐系统领域中的一项重要任务,致力于基于对用户参与的购物篮历史序列的分析来预测用户下一刻的偏好。当前的NBR模型利用唯一身份(ID)信息来表示不同的用户和商品,并专注于通过诸如循环神经网络和分层时间衰减建模等序列编码技术来捕捉用户的动态偏好,这些技术在NBR领域已经占据主导地位十多年了。然而,这些模型存在两个显著的局限性,导致用户和商品的表示都不够理想。首先,依赖唯一ID信息来推导用户和商品表示忽略了交织商品的丰富语义关系。其次,大多数NBR模型仍然局限于对单个用户的历史购物篮序列进行建模,从而忽略了用户和商品之间更广泛的全局协作关系。为了解决这些局限性,我们为NBR引入了一种具有语义感知和时间跨度耦合超图的双塔模型。它经过精心设计,将语义和协作关系整合到用户和商品表示中。具体来说,为了有效地捕捉丰富的语义关系,我们提出了一种带有大语言模型的分层语义注意力机制,以整合商品的多方面文本语义特征用于购物篮表示学习。同时,为了明确捕捉全局协作关系,我们设计了一个时间跨度耦合超图卷积网络,以有效地对用户和商品之间超图上的高阶结构连通性进行建模。最后,使用多目标联合优化损失来优化语义和协作关系的学习与整合以进行推荐。在两个公共数据集上进行的综合实验表明,我们提出的模型在召回率和归一化折损累计增益(NDCG)这两个经典评估指标上显著优于主流的NBR模型。