Raghavan Adhithi R, Hochwagen Andreas
Department of Biology, New York University, New York, NY 10003, USA.
Department of Biology, New York University, New York, NY 10003, USA.
Trends Genet. 2025 Apr;41(4):315-329. doi: 10.1016/j.tig.2024.11.006. Epub 2024 Dec 12.
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
减数分裂细胞会在其基因组中引入大量程序性DNA双链断裂(DSB),以刺激交叉重组。DSB的数量必须足够多,以确保每对同源染色体都能获得准确的减数分裂染色体分离所需的必需交叉。然而,每个DSB也会增加异常或不完全DNA修复的风险,进而增加基因组不稳定性。为了降低这些风险,减数分裂细胞进化出了一个复杂的控制网络,该网络可调节减数分裂DSB的时间、水平和基因组位置。本综述总结了我们目前对这些控制的理解,特别关注防止减数分裂DSB在错误的时间或地点形成的机制,从而保护基因组免受潜在的灾难性减数分裂错误的影响。