Suppr超能文献

HBFormer:一种基于混合注意力机制的单流框架,用于识别人类-病毒蛋白质-蛋白质相互作用。

HBFormer: a single-stream framework based on hybrid attention mechanism for identification of human-virus protein-protein interactions.

作者信息

Zhang Liyuan, Wang Sicong, Wang Yadong, Zhao Tianyi

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China.

Institute of Bioinformatics, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China.

出版信息

Bioinformatics. 2024 Nov 28;40(12). doi: 10.1093/bioinformatics/btae724.

Abstract

MOTIVATION

Exploring human-virus protein-protein interactions (PPIs) is crucial for unraveling the underlying pathogenic mechanisms of viruses. Limitations in the coverage and scalability of high-throughput approaches have impeded the identification of certain key interactions. Current popular computational methods adopt a two-stream pipeline to identify PPIs, which can only achieve relation modeling of protein pairs at the classification phase. However, the fitting capacity of the classifier is insufficient to comprehensively mine the complex interaction patterns between protein pairs.

RESULTS

In this study, we propose a pioneering single-stream framework HBFormer that combines hybrid attention mechanism and multimodal feature fusion strategy for identifying human-virus PPIs. The Transformer architecture based on hybrid attention can bridge the bidirectional information flows between human protein and viral protein, thus unifying joint feature learning and relation modeling of protein pairs. The experimental results demonstrate that HBFormer not only achieves superior performance on multiple human-virus PPI datasets but also outperforms 5 other state-of-the-art human-virus PPI identification methods. Moreover, ablation studies and scalability experiments further validate the effectiveness of our single-stream framework.

AVAILABILITY AND IMPLEMENTATION

Codes and datasets are available at https://github.com/RmQ5v/HBFormer.

摘要

动机

探索人类与病毒的蛋白质-蛋白质相互作用(PPI)对于揭示病毒潜在的致病机制至关重要。高通量方法在覆盖范围和可扩展性方面的局限性阻碍了某些关键相互作用的识别。当前流行的计算方法采用双流管道来识别PPI,在分类阶段只能实现蛋白质对的关系建模。然而,分类器的拟合能力不足以全面挖掘蛋白质对之间复杂的相互作用模式。

结果

在本研究中,我们提出了一种开创性的单流框架HBFormer,它结合了混合注意力机制和多模态特征融合策略来识别人类与病毒的PPI。基于混合注意力的Transformer架构可以在人类蛋白质和病毒蛋白质之间架起双向信息流的桥梁,从而统一蛋白质对的联合特征学习和关系建模。实验结果表明,HBFormer不仅在多个人类与病毒的PPI数据集上取得了优异的性能,而且优于其他5种先进的人类与病毒PPI识别方法。此外,消融研究和可扩展性实验进一步验证了我们单流框架的有效性。

可用性和实现

代码和数据集可在https://github.com/RmQ5v/HBFormer获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b47/11648999/2fafceee8f22/btae724f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验