Suppr超能文献

基于多尺度卷积神经网络的迁移学习方法在人类-病毒蛋白质相互作用预测中的应用。

Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction.

机构信息

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

出版信息

Bioinformatics. 2021 Dec 11;37(24):4771-4778. doi: 10.1093/bioinformatics/btab533.

Abstract

MOTIVATION

To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human-virus protein-protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance.

RESULTS

To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our main contribution, we introduce two transfer learning methods (i.e. 'frozen' type and 'fine-tuning' type) that reliably predict interactions in a target human-virus domain based on training in a source human-virus domain, by retraining CNN layers. Finally, we utilize the 'frozen' type transfer learning approach to predict human-SARS-CoV-2 PPIs, indicating that our predictions are topologically and functionally similar to experimentally known interactions.

AVAILABILITY AND IMPLEMENTATION

The source codes and datasets are available at https://github.com/XiaodiYangCAU/TransPPI/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

为了补充实验工作,基于机器学习的计算方法在预测人类 - 病毒蛋白质 - 蛋白质相互作用(PPIs)方面发挥着越来越重要的作用。此外,迁移学习可以有效地将从大型源数据集/任务中获得的先验知识应用于小型目标数据集/任务,从而提高预测性能。

结果

为了预测人类和病毒蛋白之间的相互作用,我们将进化序列特征与暹罗卷积神经网络(CNN)架构和多层感知器相结合。我们的架构优于各种基于机器学习和最先进预测方法的特征编码。作为我们的主要贡献,我们引入了两种迁移学习方法(即“冻结”型和“微调”型),通过重新训练 CNN 层,可以可靠地基于源人类 - 病毒域中的训练来预测目标人类 - 病毒域中的相互作用。最后,我们利用“冻结”型迁移学习方法来预测人类 - SARS-CoV-2 PPIs,表明我们的预测在拓扑和功能上与实验已知的相互作用相似。

可用性和实现

源代码和数据集可在 https://github.com/XiaodiYangCAU/TransPPI/ 获得。

补充信息

补充数据可在生物信息学在线获得。

相似文献

3
Transfer learning for drug-target interaction prediction.药物-靶标相互作用预测的迁移学习。
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i103-i110. doi: 10.1093/bioinformatics/btad234.
5
HLA class I binding prediction via convolutional neural networks.基于卷积神经网络的 HLA 类 I 结合预测。
Bioinformatics. 2017 Sep 1;33(17):2658-2665. doi: 10.1093/bioinformatics/btx264.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验