Ghabrial Jen, Stinnett Victoria, Ribeiro Efrain, Klausner Melanie, Morsberger Laura, Long Patty, Middlezong William, Xian Rena, Gocke Christopher, Lin Ming-Tseh, Rooper Lisa, Baraban Ezra, Argani Pedram, Pallavajjala Aparna, Murry Jaclyn B, Gross John M, Zou Ying S
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland.
Mod Pathol. 2025 Apr;38(4):100684. doi: 10.1016/j.modpat.2024.100684. Epub 2024 Dec 13.
Detecting somatic structural variants (SVs), copy number variants (CNVs), and mutations in bone and soft tissue tumors is essential for accurately diagnosing, treating, and prognosticating outcomes. Optical genome mapping (OGM) holds promise to yield useful data on SVs and CNVs but requires fresh or snap-frozen tissues. This study aimed to evaluate the clinical utility of data from OGM compared with current standard-of-care cytogenetic testing. We evaluated 60 consecutive specimens from bone and soft tissue tumors using OGM and karyotyping, fluorescence in situ hybridization, gene fusion assays, and deep next-generation sequencing. OGM accurately identified diagnostic SVs/CNVs previously detected by karyotyping and fluorescence in situ hybridization (specificity = 100%). OGM identified diagnostic and pathogenic SVs/CNVs (∼23% of cases) undetected by karyotyping (cryptic/submicroscopic). OGM allowed the detection and further characterization of complex structural rearrangements including chromoanagenesis (27% of cases) and complex 3- to 6-way translocations (15% of cases). In addition to identifying 321 SVs and CNVs among cases with chromoanagenesis events, OGM identified approximately 9 SVs and 12 CNVs per sample. A combination of OGM and deep next-generation sequencing data identified diagnostic, disease-associated, and pathogenic SVs, CNVs, and mutations in ∼98% of the cases. Our cohort contained the most extensive collection of bone and soft tissue tumors profiled by OGM. OGM had excellent concordance with standard-of-care cytogenetic testing, detecting and assigning high-resolution genome-wide genomic abnormalities with higher sensitivity than routine testing. This is the first and largest study to provide insights into the clinical utility of combined OGM and deep sequencing for the pathologic diagnosis and potential prognostication of bone and soft tissue tumors in routine clinical practice.
检测骨与软组织肿瘤中的体细胞结构变异(SVs)、拷贝数变异(CNVs)和突变对于准确诊断、治疗以及预测预后结果至关重要。光学基因组图谱(OGM)有望产生关于SVs和CNVs的有用数据,但需要新鲜或速冻组织。本研究旨在评估与当前标准护理细胞遗传学检测相比,OGM数据的临床效用。我们使用OGM和核型分析、荧光原位杂交、基因融合检测以及深度二代测序对60例连续的骨与软组织肿瘤标本进行了评估。OGM准确识别了先前通过核型分析和荧光原位杂交检测到的诊断性SVs/CNVs(特异性 = 100%)。OGM识别出了核型分析未检测到的诊断性和致病性SVs/CNVs(约23%的病例)(隐匿性/亚微观的)。OGM能够检测并进一步表征复杂的结构重排,包括染色体混乱(27%的病例)和复杂的三至六路易位(15%的病例)。除了在发生染色体混乱事件的病例中识别出321个SVs和CNVs外,OGM每个样本还识别出约9个SVs和12个CNVs。OGM和深度二代测序数据的组合在约98%的病例中识别出了诊断性、疾病相关和致病性的SVs、CNVs以及突变。我们的队列包含了通过OGM分析的最广泛的骨与软组织肿瘤集合。OGM与标准护理细胞遗传学检测具有极好的一致性,能够检测并确定全基因组范围内的高分辨率基因组异常,其灵敏度高于常规检测。这是第一项也是规模最大的研究,为在常规临床实践中联合使用OGM和深度测序对骨与软组织肿瘤进行病理诊断和潜在预后评估的临床效用提供了见解。