Zhu Xiaoxi, Zheng Huiling, Wan Xue, Duan Hang, Qi Ying, Tang Weijia, Yang Fan, Yu Limei
Key Laboratory of Cell Engineering of Guizhou Province, Guizhou Biomanufacturing Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Department of eugenic Genetics, Guiyang Maternity and Child Health Hospital, Guiyang, China.
Front Genet. 2025 Aug 25;16:1605461. doi: 10.3389/fgene.2025.1605461. eCollection 2025.
Parental chromosomal structural variations (SVs) represent a primary genetic factor contributing to recurrent spontaneous abortion (RSA). Individuals carrying SVs with complex chromosomal rearrangements (CCRs) typically exhibit a normal phenotype but are at an increased risk of miscarriage. Current standard clinical detection methods are insufficient for the identification and interpretation of all SV types, particularly complex and occult SVs, thereby presenting a significant challenge for clinical genetic counseling. Leveraging the high-resolution capabilities of optical genome mapping (OGM) technology, this study aims to rapidly and accurately identify complex SVs in RSA couples. Furthermore, it seeks to conduct an in-depth analysis of the genetic information within the breakpoint regions, thereby providing a more comprehensive scientific foundation for genetic counseling of RSA couples at both the cellular and genetic levels.
This study involved the selection of nine subjects from two families who underwent genetic counseling at our hospital. Family 1 comprised a couple with the wife as a SVs carrier, and both her parents and brother were simultaneously analyzed for chromosomal karyotype. Family 2 included a couple with the husband as the SVs carrier, with his parents also undergoing chromosomal karyotype analysis. For SVs carriers whose karyotype analysis did not elucidate the recombination pattern, optical genome mapping (OGM) technology was utilized for further investigation, followed by Sanger sequencing to validate the OGM findings.
In Family 1, only the wife was identified as an SVs carrier. Initial chromosomal karyotype analysis suggested a karyotype of 46,XX,t (5; 6;8; 13; 15) (?). However, OGM analysis ultimately confirmed the karyotype as 46,XY,der (5)t (5; 13) (q35.2; q21.32), der (6)t (6; 8) (q25.3; q13.1)ins (6; 13) (q25.3; q21.32q21.33),der (8)t (6; 8) (q26; q13.1)ins (8; 13) (q13.1; q21.33q22.1),der (13)t (13; 15) (q21.32; q26.1)ins (13; 6) (q21.32; q25.3q26), der (15)t (5; 15) (q35.2; q26.1). Furthermore, OGM identified a novel translocation variant of the gene that is associated with recurrent miscarriage. In Family 2, both the husband and his maternal parent were identified as SVs carriers. Nuclear type analysis revealed a karyotype of 46,XY,?t (1; 6) (q42; p21) (husband) and 46,XX,?t (1; 2) (p31.1; q24.1),?t (1; 6) (q42; p21) (mother). Through OGM detection and analysis, the final karyotype was determined to be 46,XY,ins (1; 6) (q42.2; p22.3p11.3) (husband) and 46,XX,der (1)t (1; 2) (p31.1; q24.1)ins (1; 6) (q42.2; p22.3p11.3), der (2) t (1; 2), der (6)ins (1; 6) (mother).
OGM technology facilitates the rapid and precise identification of complex chromosomal structural variations, effectively overcoming the limitations associated with traditional karyotype G-banding techniques in detecting intricate and cryptic SVs. This advancement substantially enhances the diagnostic rates of genetic etiology in patients experiencing RSA. The present study elucidates the specific manifestations of complex SVs using OGM technology, accurately pinpointing breakpoints and interpreting affected gene information. This provides novel reference approaches and evidence for disease assessment and genetic counseling in RSA patients. However, it is important to acknowledge certain limitations of this research: the study's inclusion of only two RSA family cohorts (comprising nine participants) may limit the generalizability of its conclusions due to the small sample size, necessitating further validation through large-scale studies. Additionally, the causal relationship between gene dysfunction and recurrent miscarriage remains to be experimentally verified in subsequent research.
父母染色体结构变异(SVs)是导致复发性自然流产(RSA)的主要遗传因素。携带复杂染色体重排(CCRs)的SVs个体通常表现出正常表型,但流产风险增加。目前的标准临床检测方法不足以识别和解释所有类型的SVs,特别是复杂和隐匿性SVs,这给临床遗传咨询带来了重大挑战。本研究利用光学基因组图谱(OGM)技术的高分辨率能力,旨在快速、准确地识别RSA夫妇中的复杂SVs。此外,它还试图对断点区域内的遗传信息进行深入分析,从而在细胞和遗传水平上为RSA夫妇的遗传咨询提供更全面的科学依据。
本研究从在我院接受遗传咨询的两个家庭中选取了9名受试者。家庭1包括一对夫妇,妻子为SVs携带者,同时对她的父母和兄弟进行了染色体核型分析。家庭2包括一对夫妇,丈夫为SVs携带者,他的父母也接受了染色体核型分析。对于核型分析未能阐明重组模式的SVs携带者,利用光学基因组图谱(OGM)技术进行进一步研究,随后进行桑格测序以验证OGM的结果。
在家庭1中,仅妻子被鉴定为SVs携带者。最初的染色体核型分析显示核型为46,XX,t(5;6;8;13;15)(?)。然而,OGM分析最终确认核型为46,XY,der(5)t(5;13)(q35.2;q21.32),der(6)t(6;8)(q25.3;q13.1)ins(6;13)(q25.3;q21.32q21.33),der(8)t(6;8)(q26;q13.1)ins(8;13)(q13.1;q21.33q22.1),der(13)t(13;15)(q21.32;q26.1)ins(13;6)(q21.32;q25.3q26),der(15)t(5;15)(q35.2;q26.1)。此外,OGM鉴定出一个与复发性流产相关的基因的新型易位变异。在家庭2中,丈夫和他的母亲均被鉴定为SVs携带者。核型分析显示核型为46,XY,?t(1;6)(q42;p21)(丈夫)和46,XX,?t(1;2)(p31.1;q24.1),?t(1;6)(q42;p21)(母亲)。通过OGM检测和分析,最终确定核型为46,XY,ins(1;6)(q42.2;p22.3p11.3)(丈夫)和46,XX,der(1)t(1;2)(p31.1;q24.1)ins(1;6)(q42.2;p22.3p11.3),der(2)t(1;2),der(6)ins(1;6)(母亲)。
OGM技术有助于快速、精确地识别复杂染色体结构变异,有效克服了传统核型G带技术在检测复杂和隐匿性SVs方面的局限性。这一进展显著提高了RSA患者遗传病因的诊断率。本研究利用OGM技术阐明了复杂SVs的具体表现,准确确定了断点并解释了受影响的基因信息。这为RSA患者的疾病评估和遗传咨询提供了新的参考方法和证据。然而,必须承认本研究存在一定局限性:由于样本量小,本研究仅纳入了两个RSA家系队列(共9名参与者),这可能会限制其结论的普遍性,需要通过大规模研究进一步验证。此外,基因功能障碍与复发性流产之间的因果关系仍有待后续研究通过实验进行验证。