Suppr超能文献

2型糖尿病患者治疗依从性的预测因素:基于彭德健康促进模型并运用结构方程模型在伊朗南部开展的一项横断面研究

Predictors of treatment adherence in patients with type 2 diabetes: a cross-sectional study in Southern Iran based on Pender's Health Promotion Model using structural equation modelling.

作者信息

Shahabi Nahid, Hosseini Zahra, Ghanbarnejad Amin, Aghamolaei Teamur

机构信息

Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

出版信息

BMJ Open. 2024 Dec 15;14(12):e091582. doi: 10.1136/bmjopen-2024-091582.

Abstract

OBJECTIVES

Treatment adherence in type 2 diabetes (T2D) is an important factor in optimal diabetes control and prevention of mortality. The present study aimed to determine the predictability of Pender's Health Promotion Model (HPM) constructs in T2D treatment adherence behaviour.

DESIGN

The present cross-sectional and analytical study was conducted from November 2022 to January 2023.

SETTING

The present study was conducted in Bandar Abbas, a city in Hormozgan Province, in the south of Iran.

PARTICIPANTS

The participants included 396 patients with T2D with medical records in the Hormoz Diabetes Clinic. Based on their record number, the participants were selected for inclusion in the study through a random systematic sampling.

PRIMARY AND SECONDARY OUTCOME MEASURES

The data collection instruments included a demographic questionnaire and a researcher-made questionnaire based on HPM constructs. The questionnaire was valid and reliable, achieving Cronbach's alpha coefficients ranging from 0.609 to 0.798 across various constructs. The questionnaires were completed face to face. Pearson's correlation test, path analysis and structural equation modelling were conducted using SPSS V.23, and STATA V.15.

STUDY STAGE

This study was conducted before intervention (pre-results).

RESULTS

As the path analysis showed, perceived self-efficacy (β=0.23, p<0.001), treatment adherence experiences (β=0.26, p<0.001), immediate competing demands and preferences (β=-0.15, p<0.001) and commitment to plan of action (β=0.24, p<0.001) could significantly predict the treatment adherence behaviour. The results of indirect path analysis showed that the total effect of perceived benefits (β=0.24, p<0.001), perceived barriers (β=-0.14, p=0.002), perceived self-efficacy (β=0.32, p<0.001) on commitment to plan of action was statistically significant. Through the mediation of commitment to plan of action, they could predict the treatment adherence behaviour.

CONCLUSIONS

In light of the present findings, it can be concluded that the proposed model of T2D treatment adherence behaviour has an acceptable fit. Commitment to plan of action, treatment adherence experiences, perceived self-efficacy and immediate competing demands and preferences are the main predictors of T2D treatment adherence behaviour. It is recommended that educational interventions focus on these constructs.

TRIAL REGISTRATION NUMBER

This study is registered on the Iranian Registry of Clinical Trials (IRCT20211228053558N1).

摘要

目的

2型糖尿病(T2D)的治疗依从性是实现最佳糖尿病控制和预防死亡的重要因素。本研究旨在确定彭德健康促进模型(HPM)的构成要素对T2D治疗依从行为的预测能力。

设计

本研究为横断面分析研究,于2022年11月至2023年1月进行。

地点

本研究在伊朗南部霍尔木兹甘省的阿巴斯港进行。

参与者

参与者包括396名在霍尔木兹糖尿病诊所留有病历的T2D患者。根据病历编号,通过随机系统抽样选择参与者纳入研究。

主要和次要观察指标

数据收集工具包括一份人口统计学调查问卷和一份基于HPM构成要素的研究者自编问卷。该问卷有效且可靠,各构成要素的克朗巴哈系数在0.609至0.798之间。问卷通过面对面方式完成。使用SPSS V.23和STATA V.15进行Pearson相关检验、路径分析和结构方程建模。

研究阶段

本研究在干预前(结果前)进行。

结果

路径分析显示,自我效能感(β=0.23,p<0.001)、治疗依从经历(β=0.26,p<0.001)、即时竞争需求和偏好(β=-0.15,p<0.001)以及对行动计划的承诺(β=0.24,p<0.001)能够显著预测治疗依从行为。间接路径分析结果显示,感知益处(β=0.24,p<0.001)、感知障碍(β=-0.14,p=0.002)、自我效能感(β=0.32,p<0.001)对行动计划承诺的总效应具有统计学意义。通过行动计划承诺的中介作用,它们能够预测治疗依从行为。

结论

根据本研究结果,可以得出结论,所提出的T2D治疗依从行为模型具有可接受的拟合度。对行动计划的承诺、治疗依从经历、自我效能感以及即时竞争需求和偏好是T2D治疗依从行为的主要预测因素。建议教育干预关注这些构成要素。

试验注册号

本研究已在伊朗临床试验注册中心注册(IRCT20211228053558N1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验