Suppr超能文献

电力及生物质转化为X过程中的燃烧与气化:火用分析

Combustion versus Gasification in Power- and Biomass-to-X Processes: An Exergetic Analysis.

作者信息

Mucci Simone, Mitsos Alexander, Bongartz Dominik

机构信息

Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany.

Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.

出版信息

ACS Omega. 2024 Nov 21;9(49):48213-48231. doi: 10.1021/acsomega.4c05549. eCollection 2024 Dec 10.

Abstract

Residual biomass is a promising carbon feedstock for the production of electricity-based organic chemicals and fuels since, unlike carbon dioxide captured from point sources or air, it also has a valuable energy input. Biomass can be converted into an intermediate stream suitable for Power-to-X processes mainly via combustion or gasification. Such combined processes are generally called biohybrid or Power- and Biomass-to-X processes. To investigate the potential of biomass utilization in Power- and Biomass-to-X processes and identify inherent efficiency differences between these pathways, we model the process units with simple mass and energy balances considering empirical parameters for the key process units and perform an exergetic analysis. The analysis is conducted for several molecules of interest for the chemical and transport sectors with different C:H:O ratios, i.e., methane, methanol, dimethyl ether, and dodecane. For all considered products, the Power- and Biomass-to-X processes with biomass gasification, either with pure oxygen or steam as oxidizing agents, have a significantly higher (∼15-20 percentage points) exergy efficiency. This difference is mainly due to the lower exergy loss for water electrolysis since a lower amount of hydrogen is needed and to the higher exergy efficiency of the gasification unit compared to that of the combustion unit. Therefore, gasification-based Power- and Biomass-to-X processes have clear thermodynamic advantages in the ideal case. These conclusions obtained with the simple models are confirmed by modeling a Power- and Biomass-to-Methanol process in detail, also accounting for practical factors such as side reactions, incomplete reactant conversion, and ash formation.

摘要

残余生物质是一种很有前景的碳原料,可用于生产电力基有机化学品和燃料,因为与从点源或空气中捕获的二氧化碳不同,它还具有宝贵的能量输入。生物质主要通过燃烧或气化可转化为适合电力到X过程的中间物流。这种联合过程通常称为生物混合或电力与生物质到X过程。为了研究生物质在电力与生物质到X过程中的利用潜力,并确定这些途径之间固有的效率差异,我们使用简单的质量和能量平衡对过程单元进行建模,考虑关键过程单元的经验参数,并进行火用分析。对化学和运输部门感兴趣的几种具有不同C:H:O比的分子,即甲烷、甲醇、二甲醚和十二烷进行了分析。对于所有考虑的产品,以纯氧或蒸汽作为氧化剂进行生物质气化的电力与生物质到X过程具有显著更高(约15 - 20个百分点)的火用效率。这种差异主要是由于水电解的火用损失较低,因为所需氢气量较少,以及气化单元的火用效率高于燃烧单元。因此,在理想情况下,基于气化的电力与生物质到X过程具有明显的热力学优势。通过详细模拟电力与生物质到甲醇过程,并考虑副反应、反应物不完全转化和灰分形成等实际因素,证实了用简单模型得出的这些结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7462/11635682/838a1d34786a/ao4c05549_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验