Labib Kristie M, Ghumman Haider, Jain Samyak, Jarstad John S
Department of Ophthalmology, University of South Florida Morsani College of Medicine, Tampa, USA.
Cureus. 2024 Nov 12;16(11):e73522. doi: 10.7759/cureus.73522. eCollection 2024 Nov.
Artificial intelligence (AI) is transforming ophthalmology by leveraging machine learning (ML) and deep learning (DL) techniques, particularly artificial neural networks (ANN) and convolutional neural networks (CNN) to mimic human brain functions and enhance accuracy through data exposure. These AI systems are particularly effective in analyzing ophthalmic images for early disease detection, improving diagnostic precision, streamlining clinical workflows, and ultimately enhancing patient outcomes. This study aims to explore the specific applications and impact of AI in the fields of glaucoma, corneal diseases, and oculoplastics. This study reviews current AI technologies in ophthalmology, examining the implementation of ML and DL techniques. It evaluates AI's role in early disease detection, diagnostic accuracy, clinical workflow enhancement, and patient outcomes. AI has significantly advanced the early detection and management of various ocular conditions. In glaucoma, AI systems provide standardized, rapid identification of disease characteristics, reducing intra- and interobserver bias and workload. For corneal diseases, AI tools enhance diagnostic methods for conditions such as keratitis and keratoconus, improving early detection and treatment planning. In oculoplastics, AI assists in the diagnosis and monitoring of eyelid and orbital diseases, facilitating precise surgical planning and postoperative management. The integration of AI in ophthalmology has revolutionized eye care by enhancing diagnostic precision, streamlining clinical workflows, and improving patient outcomes. As AI technologies continue to evolve, their applications in ophthalmology are expected to expand, offering innovative solutions for the diagnosis, monitoring, treatment, and surgical outcomes of various eye conditions.
人工智能(AI)正在通过利用机器学习(ML)和深度学习(DL)技术,特别是人工神经网络(ANN)和卷积神经网络(CNN)来模仿人类大脑功能并通过数据曝光提高准确性,从而改变眼科。这些人工智能系统在分析眼科图像以进行早期疾病检测、提高诊断精度、简化临床工作流程以及最终改善患者治疗效果方面特别有效。本研究旨在探讨人工智能在青光眼、角膜疾病和眼整形领域的具体应用和影响。本研究回顾了当前眼科中的人工智能技术,研究了机器学习和深度学习技术的实施情况。它评估了人工智能在早期疾病检测、诊断准确性、临床工作流程优化和患者治疗效果方面的作用。人工智能显著推进了各种眼部疾病的早期检测和管理。在青光眼方面,人工智能系统提供标准化、快速的疾病特征识别,减少观察者内部和观察者之间的偏差以及工作量。对于角膜疾病,人工智能工具增强了对角膜炎和圆锥角膜等病症的诊断方法,改善了早期检测和治疗计划。在眼整形方面,人工智能有助于眼睑和眼眶疾病的诊断和监测,促进精确的手术规划和术后管理。人工智能在眼科中的整合通过提高诊断精度、简化临床工作流程和改善患者治疗效果,彻底改变了眼科护理。随着人工智能技术不断发展,它们在眼科中的应用有望扩大,为各种眼部疾病的诊断、监测、治疗和手术效果提供创新解决方案。