Hung Alex Ling Yu, Zheng Haoxin, Zhao Kai, Pang Kaifeng, Terzopoulos Demetri, Sung Kyunghyun
Department of Radiological Science, UCLA.
Computer Science Department, UCLA.
Med Image Comput Comput Assist Interv. 2024 Oct;15008:113-123. doi: 10.1007/978-3-031-72111-3_11. Epub 2024 Oct 6.
Current deep learning-based models typically analyze medical images in either 2D or 3D albeit disregarding volumetric information or suffering sub-optimal performance due to the anisotropic resolution of MR data. Furthermore, providing an accurate uncertainty estimation is beneficial to clinicians, as it indicates how confident a model is about its prediction. We propose a novel 2.5D cross-slice attention model that utilizes both global and local information, along with an evidential critical loss, to perform evidential deep learning for the detection in MR images of prostate cancer, one of the most common cancers and a leading cause of cancer-related death in men. We perform extensive experiments with our model on two different datasets and achieve state-of-the-art performance in prostate cancer detection along with improved epistemic uncertainty estimation. The implementation of the model is available at https://github.com/aL3x-O-o-Hung/GLCSA_ECLoss.
当前基于深度学习的模型通常以二维或三维方式分析医学图像,不过要么忽略了体积信息,要么由于磁共振数据的各向异性分辨率而性能欠佳。此外,提供准确的不确定性估计对临床医生有益,因为它表明模型对其预测的置信程度。我们提出了一种新颖的2.5D跨切片注意力模型,该模型利用全局和局部信息以及证据关键损失,对前列腺癌(男性中最常见的癌症之一,也是癌症相关死亡的主要原因)的磁共振图像检测进行证据深度学习。我们在两个不同的数据集上对我们的模型进行了广泛的实验,并在前列腺癌检测中取得了领先的性能,同时改进了认知不确定性估计。该模型的实现可在https://github.com/aL3x-O-o-Hung/GLCSA_ECLoss上获取。