Suppr超能文献

用于不确定性感知前列腺癌检测的跨切片注意力和证据关键损失

Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware Prostate Cancer Detection.

作者信息

Hung Alex Ling Yu, Zheng Haoxin, Zhao Kai, Pang Kaifeng, Terzopoulos Demetri, Sung Kyunghyun

机构信息

Department of Radiological Science, UCLA.

Computer Science Department, UCLA.

出版信息

Med Image Comput Comput Assist Interv. 2024 Oct;15008:113-123. doi: 10.1007/978-3-031-72111-3_11. Epub 2024 Oct 6.

Abstract

Current deep learning-based models typically analyze medical images in either 2D or 3D albeit disregarding volumetric information or suffering sub-optimal performance due to the anisotropic resolution of MR data. Furthermore, providing an accurate uncertainty estimation is beneficial to clinicians, as it indicates how confident a model is about its prediction. We propose a novel 2.5D cross-slice attention model that utilizes both global and local information, along with an evidential critical loss, to perform evidential deep learning for the detection in MR images of prostate cancer, one of the most common cancers and a leading cause of cancer-related death in men. We perform extensive experiments with our model on two different datasets and achieve state-of-the-art performance in prostate cancer detection along with improved epistemic uncertainty estimation. The implementation of the model is available at https://github.com/aL3x-O-o-Hung/GLCSA_ECLoss.

摘要

当前基于深度学习的模型通常以二维或三维方式分析医学图像,不过要么忽略了体积信息,要么由于磁共振数据的各向异性分辨率而性能欠佳。此外,提供准确的不确定性估计对临床医生有益,因为它表明模型对其预测的置信程度。我们提出了一种新颖的2.5D跨切片注意力模型,该模型利用全局和局部信息以及证据关键损失,对前列腺癌(男性中最常见的癌症之一,也是癌症相关死亡的主要原因)的磁共振图像检测进行证据深度学习。我们在两个不同的数据集上对我们的模型进行了广泛的实验,并在前列腺癌检测中取得了领先的性能,同时改进了认知不确定性估计。该模型的实现可在https://github.com/aL3x-O-o-Hung/GLCSA_ECLoss上获取。

相似文献

6
Uncertainty-Aware Health Diagnostics via Class-Balanced Evidential Deep Learning.基于证据深度学习的类平衡不确定性感知健康诊断
IEEE J Biomed Health Inform. 2024 Nov;28(11):6417-6428. doi: 10.1109/JBHI.2024.3360002. Epub 2024 Nov 6.
7
Deep evidential learning for radiotherapy dose prediction.深度证据学习在放射治疗剂量预测中的应用。
Comput Biol Med. 2024 Nov;182:109172. doi: 10.1016/j.compbiomed.2024.109172. Epub 2024 Sep 23.
8
Uncertainty-Aware Dual-Evidential Learning for Weakly-Supervised Temporal Action Localization.用于弱监督时间动作定位的不确定性感知双证据学习
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15896-15911. doi: 10.1109/TPAMI.2023.3308571. Epub 2023 Nov 3.

本文引用的文献

7
Epidemiology of Prostate Cancer.前列腺癌流行病学
World J Oncol. 2019 Apr;10(2):63-89. doi: 10.14740/wjon1191. Epub 2019 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验