Yu Hung Alex Ling, Zheng Haoxin, Zhao Kai, Du Xiaoxi, Pang Kaifeng, Miao Qi, Raman Steven S, Terzopoulos Demetri, Sung Kyunghyun
University of California, Los Angeles.
IEEE Winter Conf Appl Comput Vis. 2024 Jan;2024:5911-5920. doi: 10.1109/wacv57701.2024.00582. Epub 2024 Apr 9.
A large portion of volumetric medical data, especially magnetic resonance imaging (MRI) data, is anisotropic, as the through-plane resolution is typically much lower than the in-plane resolution. Both 3D and purely 2D deep learning-based segmentation methods are deficient in dealing with such volumetric data since the performance of 3D methods suffers when confronting anisotropic data, and 2D methods disregard crucial volumetric information. Insufficient work has been done on 2.5D methods, in which 2D convolution is mainly used in concert with volumetric information. These models focus on learning the relationship across slices, but typically have many parameters to train. We offer a Cross-Slice Attention Module (CSAM) with minimal trainable parameters, which captures information across all the slices in the volume by applying semantic, positional, and slice attention on deep feature maps at different scales. Our extensive experiments using different network architectures and tasks demonstrate the usefulness and generalizability of CSAM. Associated code is available at https://github.com/aL3x-O-o-Hung/CSAM.
大部分体医学数据,尤其是磁共振成像(MRI)数据,都是各向异性的,因为层面分辨率通常远低于平面分辨率。基于3D和纯2D深度学习的分割方法在处理此类体数据时都存在不足,因为3D方法在面对各向异性数据时性能会受到影响,而2D方法则忽略了关键的体信息。关于2.5D方法的研究工作不足,在2.5D方法中,2D卷积主要与体信息协同使用。这些模型专注于学习切片间的关系,但通常有许多参数需要训练。我们提供了一个具有最少可训练参数的跨切片注意力模块(CSAM),它通过对不同尺度的深度特征图应用语义、位置和切片注意力,来捕获体中所有切片的信息。我们使用不同网络架构和任务进行的广泛实验证明了CSAM的有效性和通用性。相关代码可在https://github.com/aL3x-O-o-Hung/CSAM获取。