IEEE Trans Med Imaging. 2023 Jan;42(1):291-303. doi: 10.1109/TMI.2022.3211764. Epub 2022 Dec 29.
Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prostate MRI, such as base and apex slices, are harder to segment than other slices. This difficulty can be overcome by leveraging important multi-scale image-based information from adjacent slices, but current methods do not fully learn and exploit such cross-slice information. In this paper, we propose a novel cross-slice attention mechanism, which we use in a Transformer module to systematically learn cross-slice information at multiple scales. The module can be utilized in any existing deep-learning-based segmentation framework with skip connections. Experiments show that our cross-slice attention is able to capture cross-slice information significant for prostate zonal segmentation in order to improve the performance of current state-of-the-art methods. Cross-slice attention improves segmentation accuracy in the peripheral zones, such that segmentation results are consistent across all the prostate slices (apex, mid-gland, and base). The code for the proposed model is available at https://bit.ly/CAT-Net.
在美国,前列腺癌是男性癌症死亡的第二大主要原因。前列腺 MRI 的诊断通常依赖于准确的前列腺分区分割。然而,最先进的自动分割方法往往无法对前列腺区域进行良好的包含体积分割,因为前列腺 MRI 的某些切片,如基底和顶点切片,比其他切片更难分割。这种困难可以通过利用来自相邻切片的重要多尺度基于图像的信息来克服,但是当前的方法没有充分学习和利用这种跨切片信息。在本文中,我们提出了一种新颖的跨切片注意机制,我们将其用于 Transformer 模块中,以系统地学习多尺度的跨切片信息。该模块可以与具有跳过连接的任何现有的基于深度学习的分割框架一起使用。实验表明,我们的跨切片注意机制能够捕获对前列腺分区分割很重要的跨切片信息,从而提高当前最先进方法的性能。跨切片注意提高了外周区域的分割准确性,使得分割结果在所有前列腺切片(顶点、中叶和基底)上都保持一致。该模型的代码可在 https://bit.ly/CAT-Net 上获得。