Suppr超能文献

CAT-Net:一种用于 MRI 中前列腺分区分割的跨切片注意力变换模型。

CAT-Net: A Cross-Slice Attention Transformer Model for Prostate Zonal Segmentation in MRI.

出版信息

IEEE Trans Med Imaging. 2023 Jan;42(1):291-303. doi: 10.1109/TMI.2022.3211764. Epub 2022 Dec 29.

Abstract

Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prostate MRI, such as base and apex slices, are harder to segment than other slices. This difficulty can be overcome by leveraging important multi-scale image-based information from adjacent slices, but current methods do not fully learn and exploit such cross-slice information. In this paper, we propose a novel cross-slice attention mechanism, which we use in a Transformer module to systematically learn cross-slice information at multiple scales. The module can be utilized in any existing deep-learning-based segmentation framework with skip connections. Experiments show that our cross-slice attention is able to capture cross-slice information significant for prostate zonal segmentation in order to improve the performance of current state-of-the-art methods. Cross-slice attention improves segmentation accuracy in the peripheral zones, such that segmentation results are consistent across all the prostate slices (apex, mid-gland, and base). The code for the proposed model is available at https://bit.ly/CAT-Net.

摘要

在美国,前列腺癌是男性癌症死亡的第二大主要原因。前列腺 MRI 的诊断通常依赖于准确的前列腺分区分割。然而,最先进的自动分割方法往往无法对前列腺区域进行良好的包含体积分割,因为前列腺 MRI 的某些切片,如基底和顶点切片,比其他切片更难分割。这种困难可以通过利用来自相邻切片的重要多尺度基于图像的信息来克服,但是当前的方法没有充分学习和利用这种跨切片信息。在本文中,我们提出了一种新颖的跨切片注意机制,我们将其用于 Transformer 模块中,以系统地学习多尺度的跨切片信息。该模块可以与具有跳过连接的任何现有的基于深度学习的分割框架一起使用。实验表明,我们的跨切片注意机制能够捕获对前列腺分区分割很重要的跨切片信息,从而提高当前最先进方法的性能。跨切片注意提高了外周区域的分割准确性,使得分割结果在所有前列腺切片(顶点、中叶和基底)上都保持一致。该模型的代码可在 https://bit.ly/CAT-Net 上获得。

相似文献

1
CAT-Net: A Cross-Slice Attention Transformer Model for Prostate Zonal Segmentation in MRI.
IEEE Trans Med Imaging. 2023 Jan;42(1):291-303. doi: 10.1109/TMI.2022.3211764. Epub 2022 Dec 29.
3
Attention-guided multi-scale learning network for automatic prostate and tumor segmentation on MRI.
Comput Biol Med. 2023 Oct;165:107374. doi: 10.1016/j.compbiomed.2023.107374. Epub 2023 Aug 15.
4
5
Medical image diagnosis of prostate tumor based on PSP-Net+VGG16 deep learning network.
Comput Methods Programs Biomed. 2022 Jun;221:106770. doi: 10.1016/j.cmpb.2022.106770. Epub 2022 Mar 23.
6
Automatic prostate and peri-prostatic fat segmentation based on pyramid mechanism fusion network for T2-weighted MRI.
Comput Methods Programs Biomed. 2022 Aug;223:106918. doi: 10.1016/j.cmpb.2022.106918. Epub 2022 Jun 20.
7
Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors.
Int J Comput Assist Radiol Surg. 2018 Jun;13(6):749-757. doi: 10.1007/s11548-018-1742-6. Epub 2018 Mar 27.
9
A flexible 2.5D medical image segmentation approach with in-slice and cross-slice attention.
Comput Biol Med. 2024 Nov;182:109173. doi: 10.1016/j.compbiomed.2024.109173. Epub 2024 Sep 23.
10
CCT-Unet: A U-Shaped Network Based on Convolution Coupled Transformer for Segmentation of Peripheral and Transition Zones in Prostate MRI.
IEEE J Biomed Health Inform. 2023 Sep;27(9):4341-4351. doi: 10.1109/JBHI.2023.3289913. Epub 2023 Sep 6.

引用本文的文献

2
RaNet: a residual attention network for accurate prostate segmentation in T2-weighted MRI.
Front Med (Lausanne). 2025 Jun 26;12:1589707. doi: 10.3389/fmed.2025.1589707. eCollection 2025.
4
MPR-DIFF: A SELF-SUPERVISED DIFFUSION MODEL FOR MULTI-PLANAR REFORMATION IN PROSTATE MICRO-ULTRASOUND IMAGING.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981012. Epub 2025 May 12.
5
Multi-attention Mechanism for Enhanced Pseudo-3D Prostate Zonal Segmentation.
J Imaging Inform Med. 2025 Feb 28. doi: 10.1007/s10278-025-01401-0.
7
Cross-Slice Attention and Evidential Critical Loss for Uncertainty-Aware Prostate Cancer Detection.
Med Image Comput Comput Assist Interv. 2024 Oct;15008:113-123. doi: 10.1007/978-3-031-72111-3_11. Epub 2024 Oct 6.
8
MRI Super-Resolution With Partial Diffusion Models.
IEEE Trans Med Imaging. 2025 Mar;44(3):1194-1205. doi: 10.1109/TMI.2024.3483109. Epub 2025 Mar 17.
9
A Comparative Analysis of U-Net and Vision Transformer Architectures in Semi-Supervised Prostate Zonal Segmentation.
Bioengineering (Basel). 2024 Aug 26;11(9):865. doi: 10.3390/bioengineering11090865.
10
A mixed Mamba U-net for prostate segmentation in MR images.
Sci Rep. 2024 Aug 28;14(1):19976. doi: 10.1038/s41598-024-71045-7.

本文引用的文献

1
Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:338-346. doi: 10.1007/978-3-030-32248-9_38. Epub 2019 Oct 10.
2
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.
3
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation.
Front Genet. 2021 Feb 11;12:639930. doi: 10.3389/fgene.2021.639930. eCollection 2021.
4
Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset.
J Magn Reson Imaging. 2021 Aug;54(2):452-459. doi: 10.1002/jmri.27585. Epub 2021 Feb 26.
5
Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation.
IEEE Access. 2020;8:151817-151828. doi: 10.1109/ACCESS.2020.3017168. Epub 2020 Aug 17.
6
Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images.
Comput Math Methods Med. 2020 Oct 20;2020:8861035. doi: 10.1155/2020/8861035. eCollection 2020.
8
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
10
3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
IEEE Trans Med Imaging. 2020 Feb;39(2):447-457. doi: 10.1109/TMI.2019.2928056. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验