Varnavides Georgios, Jermyn Adam S, Anikeeva Polina, Felser Claudia, Narang Prineha
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2020 Sep 18;11(1):4710. doi: 10.1038/s41467-020-18553-y.
Rotational invariance strongly constrains the viscosity tensor of classical fluids. When this symmetry is broken in anisotropic materials a wide array of novel phenomena become possible. We explore electron fluid behaviors arising from the most general viscosity tensors in two and three dimensions, constrained only thermodynamics and crystal symmetries. We find nontrivial behaviors in both two- and three-dimensional materials, including imprints of the crystal symmetry on the large-scale flow pattern. Breaking time-reversal symmetry introduces a non-dissipative Hall component to the viscosity tensor, and while this vanishes for 3D isotropic systems we show it need not for anisotropic materials. Further, for such systems we find that the electronic fluid stress can couple to the vorticity without breaking time-reversal symmetry. Our work demonstrates the anomalous landscape for electron hydrodynamics in systems beyond graphene, and presents experimental geometries to quantify the effects of electronic viscosity.
旋转不变性对经典流体的粘度张量有很强的约束。当这种对称性在各向异性材料中被打破时,就可能出现一系列新颖的现象。我们探索二维和三维空间中由最一般的粘度张量产生的电子流体行为,只受限于热力学和晶体对称性。我们在二维和三维材料中都发现了非平凡行为,包括晶体对称性在大规模流动模式上的印记。打破时间反演对称性会给粘度张量引入一个非耗散的霍尔分量,虽然对于三维各向同性系统该分量会消失,但我们表明对于各向异性材料它不一定会消失。此外,对于此类系统,我们发现电子流体应力可以在不打破时间反演对称性的情况下与涡度耦合。我们的工作展示了超越石墨烯的系统中电子流体动力学的反常情况,并提出了用于量化电子粘度效应的实验几何结构。