Thorp Jackson G, Gerring Zachary F, Reay William R, Derks Eske M, Grotzinger Andrew D
Department of Brain and Mental Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
medRxiv. 2024 Dec 5:2024.12.03.24318432. doi: 10.1101/2024.12.03.24318432.
Pervasive genetic overlap across human complex traits necessitates developing multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we introduce Genomic Network Analysis (GNA), an analytic framework that applies the principles of network modelling to estimates of genetic overlap derived from genome-wide association study (GWAS) summary statistics. The result is a genomic network that describes the conditionally independent genetic associations between traits that remain when controlling for shared signal with the broader network of traits. Graph theory metrics provide added insight by formally quantifying the most important traits in the genomic network. GNA can discover additional trait-specific pathways by incorporating gene expression or genetic variants into the network to estimate their conditional associations with each trait. Extensive simulations establish GNA is well-powered for most GWAS. Application to a diverse set of traits demonstrate that GNA yields critical insight into the genetic architecture that demarcate genetically overlapping traits at varying levels of biological granularity.
人类复杂性状中普遍存在的基因重叠现象,使得有必要开发多变量方法来解析多效性和性状特异性的遗传信号。在此,我们引入基因组网络分析(GNA),这是一个分析框架,它将网络建模原理应用于从全基因组关联研究(GWAS)汇总统计数据中得出的遗传重叠估计。结果是一个基因组网络,它描述了在控制与更广泛性状网络的共享信号时,性状之间条件独立的遗传关联。图论指标通过正式量化基因组网络中最重要的性状,提供了更多见解。GNA可以通过将基因表达或遗传变异纳入网络,以估计它们与每个性状的条件关联,从而发现其他性状特异性途径。广泛的模拟表明,对于大多数GWAS,GNA具有足够的功效。对各种性状的应用表明,GNA能对遗传结构产生关键见解,这些遗传结构在不同生物粒度水平上划分出遗传重叠的性状。