Suppr超能文献

利用电子健康记录数据对肥胖进行深度表型分析:前景、挑战与未来方向。

Deep phenotyping obesity using EHR data: Promise, Challenges, and Future Directions.

作者信息

Ruan Xiaoyang, Lu Shuyu, Wang Liwei, Wen Andrew, Sameer Murali, Liu Hongfang

机构信息

Department of Health Data Science and AI, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston.

Department of Clinical and Health Informatics, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston.

出版信息

medRxiv. 2024 Dec 16:2024.12.06.24318608. doi: 10.1101/2024.12.06.24318608.

Abstract

UNLABELLED

Obesity affects approximately 34% of adults and 15-20% of children and adolescents in the U.S, and poses significant economic and psychosocial burdens. Due to the multifaceted nature of obesity, currently patient responses to any single anti-obesity medication (AOM) vary significantly, highlighting the need for developing approaches to obesity deep phenotyping and associated precision medicine. While recent advancement in classical phenotyping-guided pharmacotherapies have shown clinical value, they are less embraced by healthcare providers within the precision medicine framework, primarily due to their operational complexity and lack of granularity. From this perspective, several recent review articles highlighted the importance of obesity deep phenotyping for personalized precision medicine. In view of the established role of electronic health record (EHR) as an important data source for clinical phenotypings, we offer an in-depth analysis of the commonly available data elements from obesity patients prior to pharmacotherapy. We also experimented with a multi-modal longitudinal deep autoencoder to explore the feasibility, data requirements, clustering patterns, and challenges associated with EHR-based obesity deep phenotyping. Our analysis indicates at least nine clusters, among which five have distinct explainable clinical relevance. Further research within larger independent cohorts to validate the reproducibility, uncover more detailed substructures and corresponding treatment response is warranted.

BACKGROUND

Obesity affects approximately 40% of adults and 15-20% of children and adolescents in the U.S, and poses significant economic and psychosocial burdens. Currently, patient responses to any single anti-obesity medication (AOM) vary significantly, making obesity deep phenotyping and associated precision medicine important targets of investigation.

OBJECTIVE

To evaluate the potential of EHR as a primary data source for obesity deep phenotyping, we conduct an in-depth analysis of the data elements and quality available from obesity patients prior to pharmacotherapy, and apply a multi-modal longitudinal deep autoencoder to investigate the feasibility, data requirements, clustering patterns, and challenges associated with EHR-based obesity deep phenotyping.

METHODS

We analyzed 53,688 pre-AOM periods from 32,969 patients with obesity or overweight who underwent medium- to long-term AOM treatment. A total of 92 lab and vital measurements, along with 79 ICD-derived clinical classifications software (CCS) codes recorded within one year prior to AOM treatment, were used to train a gated recurrent unit with decay based longitudinal autoencoder (GRU-D-AE) to generate dense embeddings for each pre-AOM record. principal component analysis (PCA) and gaussian mixture modeling (GMM) were applied to identify clusters.

RESULTS

Our analysis identified at least nine clusters, with five exhibiting distinct and explainable clinical relevance. Certain clusters show characteristics overlapping with phenotypes from traditional phenotyping strategy. Results from multiple training folds demonstrated stable clustering patterns in two-dimensional space and reproducible clinical significance. However, challenges persist regarding the stability of missing data imputation across folds, maintaining consistency in input features, and effectively visualizing complex diseases in low-dimensional spaces.

CONCLUSION

In this proof-of-concept study, we demonstrated longitudinal EHR as a valuable resource for deep phenotyping the pre-AOM period at per patient visit level. Our analysis revealed the presence of clusters with distinct clinical significance, which could have implications in AOM treatment options. Further research using larger, independent cohorts is necessary to validate the reproducibility and clinical relevance of these clusters, uncover more detailed substructures and corresponding AOM treatment responses.

摘要

未标注

肥胖影响着美国约34%的成年人以及15% - 20%的儿童和青少年,并带来了巨大的经济和社会心理负担。由于肥胖具有多方面的特性,目前患者对任何单一抗肥胖药物(AOM)的反应差异很大,这凸显了开发肥胖深度表型分析方法及相关精准医学的必要性。虽然经典表型引导的药物治疗方面的最新进展已显示出临床价值,但在精准医学框架内,医疗服务提供者对它们的接受度较低,主要是因为其操作复杂性和缺乏粒度。从这个角度来看,最近的几篇综述文章强调了肥胖深度表型分析对个性化精准医学的重要性。鉴于电子健康记录(EHR)作为临床表型分析重要数据源的既定作用,我们对药物治疗前肥胖患者常见可用数据元素进行了深入分析。我们还试验了一种多模态纵向深度自动编码器,以探索基于EHR的肥胖深度表型分析的可行性、数据要求、聚类模式及挑战。我们的分析表明至少有九个聚类,其中五个具有明显的可解释临床相关性。在更大的独立队列中进行进一步研究以验证可重复性、发现更详细的子结构及相应的治疗反应是有必要的。

背景

肥胖影响着美国约40%的成年人以及15% - 20%的儿童和青少年,并带来了巨大的经济和社会心理负担。目前,患者对任何单一抗肥胖药物(AOM)的反应差异很大,这使得肥胖深度表型分析及相关精准医学成为重要的研究目标。

目的

为评估电子健康记录(EHR)作为肥胖深度表型分析主要数据源的潜力,我们对药物治疗前肥胖患者可用的数据元素和质量进行了深入分析,并应用多模态纵向深度自动编码器来研究基于EHR的肥胖深度表型分析的可行性、数据要求、聚类模式及挑战。

方法

我们分析了32969例接受中长期AOM治疗的肥胖或超重患者的53688个AOM治疗前阶段。在AOM治疗前一年记录的总共92项实验室和生命体征测量数据,以及79个国际疾病分类衍生临床分类软件(CCS)代码,用于训练基于衰减的纵向自动编码器门控循环单元(GRU - D - AE),为每个AOM治疗前记录生成密集嵌入。应用主成分分析(PCA)和高斯混合模型(GMM)来识别聚类。

结果

我们的分析确定了至少九个聚类,其中五个表现出明显且可解释的临床相关性。某些聚类显示出与传统表型分析策略的表型重叠的特征。多个训练折的结果表明在二维空间中聚类模式稳定且临床意义可重复。然而,在各折之间缺失数据插补的稳定性、保持输入特征的一致性以及在低维空间中有效可视化复杂疾病方面仍然存在挑战。

结论

在这项概念验证研究中,我们证明了纵向电子健康记录是在每位患者就诊水平上对AOM治疗前阶段进行深度表型分析有价值的资源。我们的分析揭示了具有明显临床意义的聚类的存在,这可能对AOM治疗选择有影响。需要使用更大的独立队列进行进一步研究,以验证这些聚类的可重复性和临床相关性,发现更详细的子结构及相应的AOM治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5040/11664947/dcda37312495/nihpp-2024.12.06.24318608v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验