Hira Riichiro, Townsend Leah B, Smith Ikuko T, Yu Che-Hang, Stirman Jeffrey N, Yu Yiyi, Smith Spencer LaVere
Department of Electrical and Computer Engineering, University of California Santa Barbara.
Neuroscience Center, University of North Carolina Chapel Hill.
bioRxiv. 2024 Dec 2:2023.08.27.555017. doi: 10.1101/2023.08.27.555017.
The posterior parietal cortex () in mice has various functions including multisensory integration, vision-guided behaviors, working memory, and posture control. However, an integrated understanding of these functions and their cortical localizations in and around the PPC and higher visual areas (), has not been completely elucidated. Here we simultaneously imaged the activity of thousands of neurons within a 3 × 3 mm field-of-view, including eight cortical areas around the PPC, during behavior with a two-photon mesoscope. Mice performed both a vision-guided task and a choice history-dependent task, and the imaging results revealed distinct, localized, behavior-related functions of two medial PPC areas. Neurons in the anteromedial () HVA responded to both vision and choice information, and thus AM is a locus of association between these channels. By contrast, the anterior () HVA stores choice history with sequential dynamics and represents posture. Mesoscale correlation analysis on the intertrial variability of neuronal activity demonstrated that neurons in area A shared fluctuations with the primary somatosensory area, while neurons in AM exhibited diverse, area-dependent interactions. Pairwise interarea interactions among neurons were precisely predicted by the anatomical input correlations, with the exception of some global interactions. Thus, the medial PPC has two distinct modules, areas A and AM, which each have distinctive modes of cortical communication. These medial PPC modules can serve separate higher-order functions: area A for transmission of information including posture, movement, and working memory; and area AM for multisensory and cognitive integration with locally processed signals.
小鼠的后顶叶皮质(PPC)具有多种功能,包括多感觉整合、视觉引导行为、工作记忆和姿势控制。然而,对于这些功能及其在PPC及其周围以及更高视觉区域(HVA)内的皮质定位的综合理解尚未完全阐明。在这里,我们使用双光子显微镜在小鼠行为期间同时成像了一个3×3毫米视野内数千个神经元的活动,该视野包括PPC周围的八个皮质区域。小鼠执行了视觉引导任务和与选择历史相关的任务,成像结果揭示了两个内侧PPC区域独特的、局部的、与行为相关的功能。前内侧(AM)HVA中的神经元对视觉和选择信息都有反应,因此AM是这些通道之间的关联位点。相比之下,前(A)HVA以顺序动态存储选择历史并代表姿势。对神经元活动的试验间变异性进行的中尺度相关性分析表明,A区的神经元与初级体感区共享波动,而AM区的神经元表现出不同的、依赖于区域的相互作用。除了一些全局相互作用外,神经元之间的成对区域间相互作用可以通过解剖学输入相关性精确预测。因此,内侧PPC有两个不同的模块,A区和AM区,它们各自具有独特的皮质通信模式。这些内侧PPC模块可以服务于不同的高阶功能:A区用于传递包括姿势、运动和工作记忆在内的信息;AM区用于与局部处理的信号进行多感觉和认知整合。