Suppr超能文献

用于全球尺度跨区域径流和洪水预测的深度学习

Deep learning for cross-region streamflow and flood forecasting at a global scale.

作者信息

Zhang Binlan, Ouyang Chaojun, Cui Peng, Xu Qingsong, Wang Dongpo, Zhang Fei, Li Zhong, Fan Linfeng, Lovati Marco, Liu Yanling, Zhang Qianqian

机构信息

State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.

出版信息

Innovation (Camb). 2024 Mar 26;5(3):100617. doi: 10.1016/j.xinn.2024.100617. eCollection 2024 May 6.

Abstract

Streamflow and flood forecasting remains one of the long-standing challenges in hydrology. Traditional physically based models are hampered by sparse parameters and complex calibration procedures particularly in ungauged catchments. We propose a novel hybrid deep learning model termed encoder-decoder double-layer long short-term memory (ED-DLSTM) to address streamflow forecasting at global scale for all (gauged and ungauged) catchments. Using historical datasets, ED-DLSTM yields a mean Nash-Sutcliffe efficiency coefficient (NSE) of 0.75 across more than 2,000 catchments from the United States, Canada, Central Europe, and the United Kingdom, highlighting improvements by the state-of-the-art machine learning over traditional hydrologic models. Moreover, ED-DLSTM is applied to 160 ungauged catchments in Chile and 76.9% of catchments obtain NSE >0 in the best situation. The interpretability of cross-region capacities of ED-DLSTM are established through the cell state induced by adding a spatial attribute encoding module, which can spontaneously form hydrological regionalization effects after performing spatial coding for different catchments. The study demonstrates the potential of deep leaning methods to overcome the ubiquitous lack of hydrologic information and deficiencies in physical model structure and parameterization.

摘要

径流和洪水预测仍然是水文学中长期存在的挑战之一。传统的基于物理的模型受到参数稀疏和校准程序复杂的阻碍,特别是在无资料流域。我们提出了一种新颖的混合深度学习模型,称为编码器-解码器双层长短期记忆模型(ED-DLSTM),以解决全球范围内所有(有资料和无资料)流域的径流预测问题。利用历史数据集,ED-DLSTM在美国、加拿大、中欧和英国的2000多个流域中产生的平均纳什-萨特克利夫效率系数(NSE)为0.75,突出了先进机器学习相对于传统水文模型的改进。此外,ED-DLSTM应用于智利的160个无资料流域,在最佳情况下,76.9%的流域NSE>0。通过添加空间属性编码模块诱导的单元状态建立了ED-DLSTM跨区域能力的可解释性,该模块在对不同流域进行空间编码后可以自发形成水文区域化效应。该研究证明了深度学习方法克服普遍存在的水文信息缺乏以及物理模型结构和参数化缺陷的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d77/11639694/9460b86037bc/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验