Suppr超能文献

skilful nowcasting of extreme precipitation with NowcastNet.

Skilful nowcasting of extreme precipitation with NowcastNet.

机构信息

School of Software, BNRist, Tsinghua University, Beijing, China.

China Meteorological Administration, Beijing, China.

出版信息

Nature. 2023 Jul;619(7970):526-532. doi: 10.1038/s41586-023-06184-4. Epub 2023 Jul 5.

Abstract

Extreme precipitation is a considerable contributor to meteorological disasters and there is a great need to mitigate its socioeconomic effects through skilful nowcasting that has high resolution, long lead times and local details. Current methods are subject to blur, dissipation, intensity or location errors, with physics-based numerical methods struggling to capture pivotal chaotic dynamics such as convective initiation and data-driven learning methods failing to obey intrinsic physical laws such as advective conservation. We present NowcastNet, a nonlinear nowcasting model for extreme precipitation that unifies physical-evolution schemes and conditional-learning methods into a neural-network framework with end-to-end forecast error optimization. On the basis of radar observations from the USA and China, our model produces physically plausible precipitation nowcasts with sharp multiscale patterns over regions of 2,048 km × 2,048 km and with lead times of up to 3 h. In a systematic evaluation by 62 professional meteorologists from across China, our model ranks first in 71% of cases against the leading methods. NowcastNet provides skilful forecasts at light-to-heavy rain rates, particularly for extreme-precipitation events accompanied by advective or convective processes that were previously considered intractable.

摘要

极端降水是气象灾害的重要成因,因此非常有必要通过 skilful nowcasting 来减轻其对社会经济的影响,这种 nowcasting 需要具备高分辨率、长提前期和局部细节。目前的方法存在模糊、消散、强度或位置误差,基于物理的数值方法难以捕捉对流起始等关键混沌动力学,而数据驱动的学习方法则无法遵守平流守恒等内在物理定律。我们提出了 NowcastNet,这是一种用于极端降水的非线性临近预报模型,它将物理演化方案和条件学习方法统一到一个具有端到端预报误差优化的神经网络框架中。基于美国和中国的雷达观测,我们的模型生成了具有物理合理性的降水临近预报,在 2048km×2048km 的区域上具有多尺度的急剧变化,提前期可达 3 小时。在中国的 62 名专业气象学家进行的系统评估中,我们的模型在 71%的情况下排名第一,优于领先方法。NowcastNet 能够提供小雨到大雨的准确预报,特别是对于伴有平流或对流过程的极端降水事件,这些事件以前被认为是难以处理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e447/10356617/3cc304edcd6e/41586_2023_6184_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验