Suppr超能文献

可调谐光子学综述:从可见光到太赫兹的光学活性材料及应用

A review of tunable photonics: Optically active materials and applications from visible to terahertz.

作者信息

Ko Joo Hwan, Yoo Young Jin, Lee Yubin, Jeong Hyeon-Ho, Song Young Min

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

出版信息

iScience. 2022 Jul 5;25(8):104727. doi: 10.1016/j.isci.2022.104727. eCollection 2022 Aug 19.

Abstract

The next frontier of photonics is evolving into reconfigurable platforms with tunable functions to realize the ubiquitous application. The dynamic control of optical properties of photonics is highly desirable for a plethora of applications, including optical communication, dynamic display, self-adaptive photonics, and multi-spectral camouflage. Recently, to meet the dynamic response over broad optical bands, optically active materials have been integrated with the diverse photonic platforms, typically in the dimension of micro/nanometer scales. Here, we review recent advances in tunable photonics with controlling optical properties from visible to terahertz (THz) spectral range. We propose guidelines for designing tunable photonics in conjunction with optically active materials, inherent in wavelength characteristics. In particular, we devote our review to their potential uses for five different applications: structural coloration, metasurface for flat optics, photonic memory, thermal radiation, and terahertz plasmonics. Finally, we conclude with an outlook on the challenges and prospects of tunable photonics.

摘要

光子学的下一个前沿领域正在演变成具有可调功能的可重构平台,以实现广泛应用。对于包括光通信、动态显示、自适应光子学和多光谱伪装在内的大量应用而言,对光子学光学特性进行动态控制是非常必要的。最近,为了满足在宽光学波段上的动态响应,已将光学活性材料与各种光子平台集成在一起,通常是在微/纳米尺度维度上。在此,我们回顾了在从可见光到太赫兹(THz)光谱范围控制光学特性的可调光子学方面的最新进展。我们结合光学活性材料提出了设计可调光子学的指导方针,这些材料具有固有的波长特性。特别是,我们将综述聚焦于它们在五种不同应用中的潜在用途:结构着色、用于平面光学的超表面、光子存储器、热辐射和太赫兹等离子体激元学。最后,我们对可调光子学的挑战和前景进行了展望并得出结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/9294196/43be3235770d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验