Benedetti Dario, Gurau Razvan, Keppler Hannes, Lettera Davide
CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France.
Heidelberg University, Institut für Theoretische Physik, Philosophenweg 19, 69120 Heidelberg, Germany.
Ann Henri Poincare. 2024;25(12):5367-5428. doi: 10.1007/s00023-024-01437-y. Epub 2024 Apr 30.
We consider the zero-dimensional quartic () vector model and present a complete study of the partition function (, ) and its logarithm, the free energy (, ), seen as functions of the coupling on a Riemann surface. We are, in particular, interested in the study of the transseries expansions of these quantities. The point of this paper is to recover such results using constructive field theory techniques with the aim to use them in the future for a rigorous analysis of resurgence in genuine quantum field theoretical models in higher dimensions. Using constructive field theory techniques, we prove that both (, ) and (, ) are Borel summable functions along all the rays in the cut complex plane . We recover the transseries expansion of (, ) using the intermediate field representation. We furthermore study the small- expansions of (, ) and (, ). For any on the sector of the Riemann surface with , the small- expansion of (, ) has infinite radius of convergence in , while the expansion of (, ) has a finite radius of convergence in for in a subdomain of the same sector. The Taylor coefficients of these expansions, and , exhibit analytic properties similar to (, ) and (, ) and have transseries expansions. The transseries expansion of is readily accessible: much like (, ), for any , has a zero- and a one-instanton contribution. The transseries of is obtained using Möbius inversion, and summing these transseries yields the transseries expansion of (, ). The transseries of and (, ) are markedly different: while (, ) displays contributions from arbitrarily many multi-instantons, exhibits contributions of only up to -instanton sectors.
我们考虑零维四次()向量模型,并对配分函数(, )及其对数即自由能(, )进行完整研究,它们被视为黎曼曲面上耦合的函数。我们特别感兴趣的是对这些量的超级数展开的研究。本文的要点是使用构造性场论技术来恢复此类结果,目的是在未来将其用于对更高维真实量子场论模型中的复苏进行严格分析。使用构造性场论技术,我们证明(, )和(, )沿割复平面中的所有射线都是波莱尔可和函数。我们使用中间场表示来恢复(, )的超级数展开。此外,我们研究(, )和(, )的小展开。对于黎曼曲面上满足 的扇形区域中的任何 ,(, )的小展开在 中具有无限收敛半径,而对于同一扇形区域子域中的 ,(, )的展开在 中具有有限收敛半径。这些展开的泰勒系数 和 表现出与(, )和(, )类似的解析性质并且具有超级数展开。 的超级数展开很容易得到:与(, )非常相似,对于任何 , 都有零瞬子和单瞬子贡献。 的超级数通过莫比乌斯反演得到,对这些超级数求和得到(, )的超级数展开。 和(, )的超级数明显不同:虽然(, )显示出任意多个多瞬子的贡献,但 仅显示至多 -瞬子扇区的贡献。