Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
Department of Pathology and Laboratory Medicine, Jackson Memorial Hospital, Miami, FL, USA.
BMC Cancer. 2022 May 5;22(1):494. doi: 10.1186/s12885-022-09559-4.
TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification.
OBJECTIVE: We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone.
Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch.
Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model.
All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively.
A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.
TMPRSS2-ERG 基因重排是前列腺癌中最常见的 E26 转化特异(ETS)基因融合,已知其与疾病的发病机制有关,并在临床上为前列腺癌患者提供诊断注释。目前,仅通过 H&E 染色幻灯片的组织学特征无法可靠地识别前列腺腺癌中的 ERG 重排状态,因此需要辅助研究,如免疫组织化学(IHC)、荧光原位杂交(FISH)或下一代测序(NGS)来识别。
目的:我们因此寻求开发一种基于深度学习的算法,仅根据 H&E 形态的数字化幻灯片识别前列腺腺癌中的 ERG 重排状态。
设计、设置和参与者:使用 QuPath 对 392 例内部和 TCGA 病例的全切片图像进行注释,并使用 10×、20×和 40× 分别导出 224×224 像素的图像块,输入基于预训练在 ImageNet 上的 MobileNetV2 卷积神经网络架构的深度学习模型。为每个放大倍数训练一个单独的模型。训练和测试数据集分别包含 261 例和 131 例。该模型的输出包括对每个输入块的 ERG 阳性(ERG 重排)或 ERG 阴性(ERG 未重排)状态的预测。
使用各种准确性测量,包括接收器操作特征(ROC)曲线的曲线下面积(AUC),评估深度学习模型。
所有模型均显示出相似的 ROC 曲线,AUC 结果在 0.82 到 0.85 之间。这些模型的灵敏度和特异性分别为 75.0%和 83.1%(20× 模型)。
基于深度学习的模型可以仅使用 H&E 染色的数字幻灯片成功预测大多数前列腺腺癌中的 ERG 重排状态。这种基于人工智能的模型可以消除使用额外的肿瘤组织进行辅助研究以评估前列腺腺癌中 ERG 基因重排的需要。