Suppr超能文献

利用表面晶格共振平衡等离子体传感器的探测率和灵敏度。

Balancing detectivity and sensitivity of plasmonic sensors with surface lattice resonance.

作者信息

Li Zhichao, Prasad Ciril S, Wang Xielin, Zhang Ding, Lach Rosemary, Naik Gururaj V

机构信息

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

Applied Physics Program, Rice University, Houston, TX 77005, USA.

出版信息

Nanophotonics. 2023 Sep 7;12(19):3721-3727. doi: 10.1515/nanoph-2023-0225. eCollection 2023 Sep.

Abstract

Resonators are at the core of optical sensors enhancing light-analyte interaction and leading to higher sensitivities. Maximizing the sensitivity is an obvious objective function for the resonator design. However, high sensitivity does not guarantee sufficient detectivity. When the optical energy budget is limited, as in sensors on mobile platforms, a higher sensitivity usually leads to lower detectivity for nanophotonic sensors. In such scenarios, resonator design requires balancing the trade-off between the sensitivity and detectivity of the resonant sensor. Here, we show the direct dependence of detectivity on the -factor and the trade-off between the -factor and sensitivity. We study this trade-off in an array of plasmonic resonators. We choose plasmonic resonators because of their high sensitivity arising from large local field enhancements. Then, we show that the detectivity of this sensor may be boosted for limited energy budget applications by making an array of resonators supporting a surface lattice resonance (SLR). We experimentally demonstrate sensing and detection of antimouse IgG protein in a gold nanodisk array-based SLR sensor for various energy budgets.

摘要

谐振器是光学传感器的核心,可增强光与分析物的相互作用并提高灵敏度。最大化灵敏度是谐振器设计的一个明显目标函数。然而,高灵敏度并不保证有足够的探测能力。当光能量预算有限时,如在移动平台上的传感器中,对于纳米光子传感器而言,较高的灵敏度通常会导致较低的探测能力。在这种情况下,谐振器设计需要平衡谐振传感器灵敏度和探测能力之间的权衡。在此,我们展示了探测能力对品质因数的直接依赖性以及品质因数与灵敏度之间的权衡。我们在一系列等离子体谐振器中研究这种权衡。我们选择等离子体谐振器是因为它们因大的局部场增强而具有高灵敏度。然后,我们表明,通过制作支持表面晶格共振(SLR)的谐振器阵列,对于能量预算有限的应用,该传感器的探测能力可以得到提高。我们通过实验证明了在基于金纳米盘阵列的SLR传感器中,针对各种能量预算对抗小鼠IgG蛋白的传感和检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4fb/11636301/927f86b99c12/j_nanoph-2023-0225_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验