Hossain Md Anik, Illescas-Lopez Sara, Rahman Md Wazedur, Mañas Torres Mari C, Contreras-Montoya Rafael, Firouzeh Seyedamin, Gavira José A, Álvarez de Cienfuegos Luis, Pramanik Sandipan
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain.
Chem Mater. 2024 Nov 20;36(23):11449-11461. doi: 10.1021/acs.chemmater.4c02108. eCollection 2024 Dec 10.
Transfer of chirality, or transmission of asymmetric information from one system to another, plays an essential role in fundamental biological and chemical processes and, therefore, is essential for life. This phenomenon also holds immense potential in spintronics in the context of chirality-induced spin selectivity (CISS). In the CISS, the spatial arrangement of chiral molecules influences the spin state of electrons during the charge-transfer processes. Transfer of chirality from chiral molecules to an achiral material in a hybrid environment enables induction of spin polarization in the achiral material, thus vastly expanding the library of CISS-active electronic materials. Such "induced" CISS signals could have different responses compared to pure chiral molecules because the electronic properties of the achiral material come into play in the former case. In addition, multiple chiral sources can be used, which can have a nontrivial contribution to the induced CISS effect and can act either synergistically or antagonistically. This opens the way to achieving tunability of the CISS signals via chemical means. Earlier, such a chirality-transfer phenomenon and the resulting induced CISS effect were demonstrated in a hybrid system containing carbon nanotubes (CNTs) functionalized with a chiral agent (Fmoc-diphenylalanine l/d). In this context, we extend this result by investigating the role of an additional chiral moiety (l-lysozyme enzyme crystals) in this system. Here, the chiral crystal surrounds the chiral-functionalized CNTs, and we show that synergistic interactions result in more efficient chirality transfer, resulting in nontrivial changes in the CISS effect. This manifests in the form of (a) a stronger CISS signal compared to only one single chiral agent, (b) nonmonotonic temperature dependence and sign reversal of the CISS signal, and (c) persistence of the CISS signal at higher temperatures. Hybrid chiral materials with multiple chiral sources could, therefore, offer intricate control of the CISS signal via modification of its constituents, which is not possible in homogeneous chiral systems with single chiral sources.
手性转移,即将不对称信息从一个系统传递到另一个系统,在基本的生物和化学过程中起着至关重要的作用,因此对生命而言必不可少。在由手性诱导自旋选择性(CISS)构成的自旋电子学领域,这一现象也具有巨大潜力。在CISS中,手性分子的空间排列在电荷转移过程中会影响电子的自旋状态。在混合环境中,手性从手性分子转移到非手性材料能够在非手性材料中诱导出自旋极化,从而极大地扩充了具有CISS活性的电子材料库。与纯手性分子相比,这种“诱导”的CISS信号可能会有不同的响应,因为在前一种情况下非手性材料的电子特性会发挥作用。此外,可以使用多个手性源,它们对诱导的CISS效应可能会有重要贡献,并且可以协同或拮抗作用。这为通过化学手段实现CISS信号的可调性开辟了道路。此前,在一个包含用手性试剂(Fmoc - 二苯基丙氨酸l/d)功能化的碳纳米管(CNT)的混合系统中证明了这种手性转移现象以及由此产生的诱导CISS效应。在此背景下,我们通过研究该系统中另一个手性部分(l - 溶菌酶酶晶体)的作用来扩展这一结果。在这里,手性晶体包围着手性功能化的CNT,并且我们表明协同相互作用会导致更有效的手性转移,从而使CISS效应发生显著变化。这表现为:(a)与仅有一种单一手性试剂相比,CISS信号更强;(b)CISS信号的温度依赖性非单调且信号符号反转;(c)CISS信号在较高温度下持续存在。因此,具有多个手性源的混合手性材料可以通过改变其成分来实现对CISS信号的精细控制,这在具有单一手性源的均匀手性系统中是不可能实现的。