Suppr超能文献

使用皮肤病变的可见光和扩展近红外多光谱图像训练先进的深度学习算法以改善皮肤癌诊断

Training State-of-the-Art Deep Learning Algorithms with Visible and Extended Near-Infrared Multispectral Images of Skin Lesions for the Improvement of Skin Cancer Diagnosis.

作者信息

Rey-Barroso Laura, Vilaseca Meritxell, Royo Santiago, Díaz-Doutón Fernando, Lihacova Ilze, Bondarenko Andrey, Burgos-Fernández Francisco J

机构信息

Centre for Sensors, Instruments and Systems Development, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain.

Institute of Atomic Physics and Spectroscopy, University of Latvia, 1004 Riga, Latvia.

出版信息

Diagnostics (Basel). 2025 Feb 3;15(3):355. doi: 10.3390/diagnostics15030355.

Abstract

An estimated 60,000 people die annually from skin cancer, predominantly melanoma. The diagnosis of skin lesions primarily relies on visual inspection, but around half of lesions pose diagnostic challenges, often necessitating a biopsy. Non-invasive detection methods like Computer-Aided Diagnosis (CAD) using Deep Learning (DL) are becoming more prominent. This study focuses on the use of multispectral (MS) imaging to improve skin lesion classification of DL models. We trained two convolutional neural networks (CNNs)-a simple CNN with six two-dimensional (2D) convolutional layers and a custom VGG-16 model with three-dimensional (3D) convolutional layers-using a dataset of MS images. The dataset included spectral cubes from 327 nevi, 112 melanomas, and 70 basal cell carcinomas (BCCs). We compared the performance of the CNNs trained with full spectral cubes versus using only three spectral bands closest to RGB wavelengths. The custom VGG-16 model achieved a classification accuracy of 71% with full spectral cubes and 45% with RGB-simulated images. The simple CNN achieved an accuracy of 83% with full spectral cubes and 36% with RGB-simulated images, demonstrating the added value of spectral information. These results confirm that MS imaging provides complementary information beyond traditional RGB images, contributing to improved classification performance. Although the dataset size remains a limitation, the findings indicate that MS imaging has significant potential for enhancing skin lesion diagnosis, paving the way for further advancements as larger datasets become available.

摘要

据估计,每年有6万人死于皮肤癌,主要是黑色素瘤。皮肤病变的诊断主要依靠目视检查,但约有一半的病变存在诊断挑战,通常需要进行活检。像使用深度学习(DL)的计算机辅助诊断(CAD)这样的非侵入性检测方法正变得越来越突出。本研究重点关注使用多光谱(MS)成像来改进DL模型的皮肤病变分类。我们使用一个MS图像数据集训练了两个卷积神经网络(CNN)——一个具有六个二维(2D)卷积层的简单CNN和一个具有三维(3D)卷积层的定制VGG-16模型。该数据集包括来自327个痣、112个黑色素瘤和70个基底细胞癌(BCC)的光谱立方体。我们比较了用完整光谱立方体训练的CNN与仅使用最接近RGB波长的三个光谱带训练的CNN的性能。定制的VGG-16模型在使用完整光谱立方体时分类准确率为71%,在使用RGB模拟图像时为45%。简单CNN在使用完整光谱立方体时准确率为83%,在使用RGB模拟图像时为

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e571/11817636/d3c86e702084/diagnostics-15-00355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验