Suppr超能文献

嵌入式CPU-GPU瞳孔追踪。

Embedded CPU-GPU pupil tracking.

作者信息

Kowalski Bartlomiej, Huang Xiaojing, Dubra Alfredo

机构信息

Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.

出版信息

Biomed Opt Express. 2024 Nov 13;15(12):6799-6815. doi: 10.1364/BOE.541421. eCollection 2024 Dec 1.

Abstract

We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt. Express12, 6496 (2021)10.1364/BOE.433766]. Various desktop and embedded computers were tested, some with two operating systems, using the traditional sequential pupil tracking paradigm, in which the processing of the camera image only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated using two Scheimpflug optical setups, telecentric in both image and object spaces, with different optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field of view illuminated with 940 nm light. Eye images from subjects with different iris and skin pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe light levels was demonstrated using two complementary metal-oxide-semiconductor cameras with global shutter, operating at 438 and 1,045 fps with an ∼500 × 420 pixel region of interest (ROI), and at 633 and 1,897 fps with ∼315 × 280 pixel ROI. For these image sizes, the desktop computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers delivered calculation times in the 0.8-1.3 ms range.

摘要

我们在具有终端用户离散和集成中央处理器(CPU)以及图形处理器(GPU)的计算平台上,使用高级编程来探索基于摄像头的瞳孔跟踪技术,旨在实现此前通过专用硬件和编程才能达到的低计算延迟(Kowalski等人,[《生物医学光学快报》12, 6496 (2021)10.1364/BOE.433766])。我们测试了各种台式机和嵌入式计算机,其中一些配备了两种操作系统,采用传统的顺序瞳孔跟踪范式,即摄像头图像在完全下载到计算机后才开始处理。使用两种施密特-普吕克光学装置演示了瞳孔跟踪,这两种装置在图像空间和物空间均为远心,具有不同的光学放大倍数,并且在约18毫米的全视场范围内,在940纳米光照射下具有标称的衍射极限性能。在该波长下捕获的不同虹膜和皮肤色素沉着受试者的眼睛图像表明,所提出的瞳孔跟踪不存在种族偏差。这些装置的光轴倾斜45°,以便于与其他仪器集成,而无需分光。使用两个具有全局快门的互补金属氧化物半导体相机进行了演示,在约500×420像素感兴趣区域(ROI)下,帧率分别为438和1045帧/秒,在约315×280像素ROI下,帧率分别为633和1897帧/秒,实现了约0.9 - 4.4微米的跟踪精度和安全的光水平。对于这些图像尺寸,台式计算机的计算时间低至0.5毫秒,而低成本嵌入式计算机的计算时间在0.8 - 1.3毫秒范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8048/11640584/2c3315c9b9a9/boe-15-12-6799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验