Centre for Applied Vision Research, School of Health & Psychological Sciences , City, University of London, London, UK.
Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia.
Cochrane Database Syst Rev. 2023 Feb 16;2(2):CD014758. doi: 10.1002/14651858.CD014758.pub2.
Myopia is a common refractive error, where elongation of the eyeball causes distant objects to appear blurred. The increasing prevalence of myopia is a growing global public health problem, in terms of rates of uncorrected refractive error and significantly, an increased risk of visual impairment due to myopia-related ocular morbidity. Since myopia is usually detected in children before 10 years of age and can progress rapidly, interventions to slow its progression need to be delivered in childhood.
To assess the comparative efficacy of optical, pharmacological and environmental interventions for slowing myopia progression in children using network meta-analysis (NMA). To generate a relative ranking of myopia control interventions according to their efficacy. To produce a brief economic commentary, summarising the economic evaluations assessing myopia control interventions in children. To maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE; Embase; and three trials registers. The search date was 26 February 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of optical, pharmacological and environmental interventions for slowing myopia progression in children aged 18 years or younger. Critical outcomes were progression of myopia (defined as the difference in the change in spherical equivalent refraction (SER, dioptres (D)) and axial length (mm) in the intervention and control groups at one year or longer) and difference in the change in SER and axial length following cessation of treatment ('rebound'). DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. We assessed bias using RoB 2 for parallel RCTs. We rated the certainty of evidence using the GRADE approach for the outcomes: change in SER and axial length at one and two years. Most comparisons were with inactive controls.
We included 64 studies that randomised 11,617 children, aged 4 to 18 years. Studies were mostly conducted in China or other Asian countries (39 studies, 60.9%) and North America (13 studies, 20.3%). Fifty-seven studies (89%) compared myopia control interventions (multifocal spectacles, peripheral plus spectacles (PPSL), undercorrected single vision spectacles (SVLs), multifocal soft contact lenses (MFSCL), orthokeratology, rigid gas-permeable contact lenses (RGP); or pharmacological interventions (including high- (HDA), moderate- (MDA) and low-dose (LDA) atropine, pirenzipine or 7-methylxanthine) against an inactive control. Study duration was 12 to 36 months. The overall certainty of the evidence ranged from very low to moderate. Since the networks in the NMA were poorly connected, most estimates versus control were as, or more, imprecise than the corresponding direct estimates. Consequently, we mostly report estimates based on direct (pairwise) comparisons below. At one year, in 38 studies (6525 participants analysed), the median change in SER for controls was -0.65 D. The following interventions may reduce SER progression compared to controls: HDA (mean difference (MD) 0.90 D, 95% confidence interval (CI) 0.62 to 1.18), MDA (MD 0.65 D, 95% CI 0.27 to 1.03), LDA (MD 0.38 D, 95% CI 0.10 to 0.66), pirenzipine (MD 0.32 D, 95% CI 0.15 to 0.49), MFSCL (MD 0.26 D, 95% CI 0.17 to 0.35), PPSLs (MD 0.51 D, 95% CI 0.19 to 0.82), and multifocal spectacles (MD 0.14 D, 95% CI 0.08 to 0.21). By contrast, there was little or no evidence that RGP (MD 0.02 D, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.07 D, 95% CI -0.09 to 0.24) or undercorrected SVLs (MD -0.15 D, 95% CI -0.29 to 0.00) reduce progression. At two years, in 26 studies (4949 participants), the median change in SER for controls was -1.02 D. The following interventions may reduce SER progression compared to controls: HDA (MD 1.26 D, 95% CI 1.17 to 1.36), MDA (MD 0.45 D, 95% CI 0.08 to 0.83), LDA (MD 0.24 D, 95% CI 0.17 to 0.31), pirenzipine (MD 0.41 D, 95% CI 0.13 to 0.69), MFSCL (MD 0.30 D, 95% CI 0.19 to 0.41), and multifocal spectacles (MD 0.19 D, 95% CI 0.08 to 0.30). PPSLs (MD 0.34 D, 95% CI -0.08 to 0.76) may also reduce progression, but the results were inconsistent. For RGP, one study found a benefit and another found no difference with control. We found no difference in SER change for undercorrected SVLs (MD 0.02 D, 95% CI -0.05 to 0.09). At one year, in 36 studies (6263 participants), the median change in axial length for controls was 0.31 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.33 mm, 95% CI -0.35 to 0.30), MDA (MD -0.28 mm, 95% CI -0.38 to -0.17), LDA (MD -0.13 mm, 95% CI -0.21 to -0.05), orthokeratology (MD -0.19 mm, 95% CI -0.23 to -0.15), MFSCL (MD -0.11 mm, 95% CI -0.13 to -0.09), pirenzipine (MD -0.10 mm, 95% CI -0.18 to -0.02), PPSLs (MD -0.13 mm, 95% CI -0.24 to -0.03), and multifocal spectacles (MD -0.06 mm, 95% CI -0.09 to -0.04). We found little or no evidence that RGP (MD 0.02 mm, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.03 mm, 95% CI -0.10 to 0.03) or undercorrected SVLs (MD 0.05 mm, 95% CI -0.01 to 0.11) reduce axial length. At two years, in 21 studies (4169 participants), the median change in axial length for controls was 0.56 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.47mm, 95% CI -0.61 to -0.34), MDA (MD -0.33 mm, 95% CI -0.46 to -0.20), orthokeratology (MD -0.28 mm, (95% CI -0.38 to -0.19), LDA (MD -0.16 mm, 95% CI -0.20 to -0.12), MFSCL (MD -0.15 mm, 95% CI -0.19 to -0.12), and multifocal spectacles (MD -0.07 mm, 95% CI -0.12 to -0.03). PPSL may reduce progression (MD -0.20 mm, 95% CI -0.45 to 0.05) but results were inconsistent. We found little or no evidence that undercorrected SVLs (MD -0.01 mm, 95% CI -0.06 to 0.03) or RGP (MD 0.03 mm, 95% CI -0.05 to 0.12) reduce axial length. There was inconclusive evidence on whether treatment cessation increases myopia progression. Adverse events and treatment adherence were not consistently reported, and only one study reported quality of life. No studies reported environmental interventions reporting progression in children with myopia, and no economic evaluations assessed interventions for myopia control in children.
AUTHORS' CONCLUSIONS: Studies mostly compared pharmacological and optical treatments to slow the progression of myopia with an inactive comparator. Effects at one year provided evidence that these interventions may slow refractive change and reduce axial elongation, although results were often heterogeneous. A smaller body of evidence is available at two or three years, and uncertainty remains about the sustained effect of these interventions. Longer-term and better-quality studies comparing myopia control interventions used alone or in combination are needed, and improved methods for monitoring and reporting adverse effects.
近视是一种常见的屈光不正,其特征是眼轴拉长,导致远处物体模糊。近视的流行率不断上升,是一个日益严重的全球公共卫生问题,其原因在于未矫正的屈光不正率以及近视相关眼疾导致的视力损害风险显著增加。由于近视通常在 10 岁以下儿童中发现,并且可能迅速进展,因此需要在儿童期进行干预以减缓其进展。
使用网络荟萃分析(NMA)评估光学、药理学和环境干预措施对儿童近视进展的相对疗效。根据疗效对近视控制干预措施进行相对排名。总结评估儿童近视控制干预措施的经济评价,概述儿童近视控制干预措施的经济评价。使用实时系统评价方法保持证据的时效性。
我们检索了 Cochrane 眼科和视觉试验注册中心(CENTRAL)、MEDLINE、Embase 和三个试验注册处。检索日期为 2022 年 2 月 26 日。
我们纳入了年龄在 18 岁以下的儿童中减缓近视进展的随机对照试验(RCT)。关键结局是近视进展(定义为干预组和对照组在一年或更长时间的随访中屈光度(D)和眼轴长度(mm)的变化差异)和治疗停止后的屈光度和眼轴长度变化(称为“反弹”)。
我们遵循了 Cochrane 标准方法。我们使用 RoB 2 评估平行 RCT 的偏倚。我们使用 GRADE 方法对一年和两年的屈光度和眼轴长度变化进行了证据质量评级。大多数比较都是与非活性对照进行的。
我们纳入了 64 项研究,共纳入 11617 名儿童。这些研究主要在亚洲(中国或其他亚洲国家,39 项研究,占 60.9%)和北美(13 项研究,占 20.3%)进行。57 项研究(89%)比较了近视控制干预措施(多焦点眼镜、周边离焦镜(PPSL)、未矫正单视镜(SVLs)、多焦点软性隐形眼镜(MFSCL)、角膜塑形术、透气性硬性隐形眼镜(RGP);或药理学干预措施(包括高(HDA)、中(MDA)和低剂量(LDA)阿托品、匹鲁卡品或 7-甲基黄嘌呤)与非活性对照。研究持续时间为 12 至 36 个月。证据的整体确定性范围从极低到中等。由于 NMA 中的网络连接较差,大多数与对照相比的估计值与直接(成对)比较相比,同样或更不准确。因此,我们主要报告基于直接(成对)比较的估计值。在一年时,在 38 项研究(6525 名参与者)中,对照组的屈光度平均变化为 -0.65 D。以下干预措施可能与对照组相比减少屈光度进展:HDA(平均差异(MD)0.90 D,95%置信区间(CI)0.62 至 1.18)、MDA(MD 0.65 D,95% CI 0.27 至 1.03)、LDA(MD 0.38 D,95% CI 0.10 至 0.66)、匹鲁卡品(MD 0.32 D,95% CI 0.15 至 0.49)、MFSCL(MD 0.26 D,95% CI 0.17 至 0.35)、PPSLs(MD 0.51 D,95% CI 0.19 至 0.82)和多焦点眼镜(MD 0.14 D,95% CI 0.08 至 0.21)。相比之下,RGP(MD 0.02 D,95% CI -0.05 至 0.10)、7-甲基黄嘌呤(MD 0.07 D,95% CI -0.09 至 0.24)或未矫正的 SVLs(MD -0.15 D,95% CI -0.29 至 0.00)的干预措施对进展几乎没有或没有影响。在两年时,在 26 项研究(4949 名参与者)中,对照组的屈光度平均变化为 -1.02 D。以下干预措施可能与对照组相比减少屈光度进展:HDA(MD 1.26 D,95% CI 1.17 至 1.36)、MDA(MD 0.45 D,95% CI 0.08 至 0.83)、LDA(MD 0.24 D,95% CI 0.17 至 0.31)、匹鲁卡品(MD 0.41 D,95% CI 0.13 至 0.69)、MFSCL(MD 0.30 D,95% CI 0.19 至 0.41)和多焦点眼镜(MD 0.19 D,95% CI 0.08 至 0.30)。PPSLs(MD 0.34 D,95% CI -0.08 至 0.76)也可能减少进展,但结果不一致。对于 RGP,一项研究发现有获益,另一项研究发现与对照组无差异。我们发现未矫正的 SVLs(MD 0.02 D,95% CI -0.05 至 0.09)在屈光度变化方面没有差异。在一年时,在 36 项研究(6263 名参与者)中,对照组的眼轴长度平均变化为 0.31 mm。以下干预措施可能与对照组相比减少眼轴伸长:HDA(MD -0.33 mm,95% CI -0.35 至 0.30)、MDA(MD -0.28 mm,95% CI -0.38 至 -0.17)、LDA(MD -0.13 mm,95% CI -0.21 至 -0.05)、角膜塑形术(MD -0.19 mm,95% CI -0.23 至 -0.15)、MFSCL(MD -0.11 mm,95% CI -0.13 至 -0.09)、匹鲁卡品(MD -0.10 mm,95% CI -0.18 至 -0.02)、PPSLs(MD -0.13 mm,95% CI -0.24 至 -0.03)和多焦点眼镜(MD -0.06 mm,95% CI -0.09 至 -0.04)。我们发现 RGP(MD 0.02 mm,95% CI -0.05 至 0.10)、7-甲基黄嘌呤(MD 0.03 mm,95% CI -0.10 至 0.03)或未矫正的 SVLs(MD 0.05 mm,95% CI -0.01 至 0.11)对眼轴长度的影响很小或没有。在两年时,在 21 项研究(4169 名参与者)中,对照组的眼轴长度平均变化为 0.56 mm。以下干预措施可能与对照组相比减少眼轴伸长:HDA(MD -0.47mm,95% CI -0.61 至 -0.34)、MDA(MD -0.33 mm,95% CI -0.46 至 -0.20)、角膜塑形术(MD -0.28 mm,95% CI -0.38 至 -0.19)、LDA(MD -0.16 mm,95% CI -0.20 至 -0.12)、