Kraisler Eli
Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel.
J Chem Theory Comput. 2025 Jan 14;21(1):155-169. doi: 10.1021/acs.jctc.4c01152. Epub 2024 Dec 16.
Kohn-Sham (KS) density functional theory (DFT) is an extremely popular, in-principle exact method, which can describe any many-electron system by introducing an auxiliary system of noninteracting electrons with the same density. When the number of electrons, , changes continuously, taking on both integer and fractional values, the density has to be piecewise-linear, with respect to . In this article, I explore how the piecewise-linearity property of the exact interacting density is reflected in the KS system. In particular, I suggest to express KS quantities using the two-point Taylor expansion in and find how the expansion coefficients are restricted by the piecewise-linearity requirement. Focus is given to the total electron density, the KS subdensities, and the highest occupied (HOMO) orbital density. In addition to exact analytical results, common approximations for the HOMO, namely, the frozen and the linear regimes, are analyzed. A numerical investigation using various exchange-correlation approximations is performed to test the analytical findings. The outcomes of this work will help to remove density-driven errors in DFT calculations for open systems and ensembles.
科恩-沈(KS)密度泛函理论(DFT)是一种极其流行的、原则上精确的方法,它可以通过引入一个具有相同密度的非相互作用电子辅助系统来描述任何多电子系统。当电子数(N)连续变化,取整数值和分数值时,密度相对于(N)必须是分段线性的。在本文中,我探讨了精确相互作用密度的分段线性性质如何在KS系统中体现。特别地,我建议使用关于(N)的两点泰勒展开来表示KS量,并找出展开系数如何受到分段线性要求的限制。重点关注总电子密度、KS子密度和最高占据分子轨道(HOMO)密度。除了精确的解析结果外,还分析了HOMO的常见近似,即冻结和线性区域。使用各种交换关联近似进行了数值研究,以检验解析结果。这项工作的结果将有助于消除开放系统和系综的DFT计算中密度驱动的误差。