Grigis Antoine, Gomez Chloé, Frouin Vincent, Duchesnay Edouard, Uhrig Lynn, Jarraya Béchir
Université Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France.
Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, Gif-sur-Yvette, France.
PLoS One. 2024 Dec 16;19(12):e0314598. doi: 10.1371/journal.pone.0314598. eCollection 2024.
Functional connectivity (FC) of resting-state fMRI time series can be estimated using methods that differ in their temporal sensitivity (static vs. dynamic) and the number of regions included in the connectivity estimation (derived from a prior atlas). This paper presents a novel framework for identifying and quantifying resting-state networks using resting-state fMRI recordings. The study employs a linear latent variable model to generate spatially distinct brain networks and their associated activities. It specifically addresses the atlas selection problem, and the statistical inference and multivariate analysis of the obtained brain network activities. The approach is demonstrated on a dataset of resting-state fMRI recordings from monkeys under different anesthetics using static FC. Our results suggest that two networks, one fronto-parietal and cingular and another temporo-parieto-occipital (posterior brain) strongly influences shifts in consciousness, especially between anesthesia and wakefulness. Interestingly, this observation aligns with the two prominent theories of consciousness: the global neural workspace and integrated information theories of consciousness. The proposed method is also able to decipher the level of anesthesia from the brain network activities. Overall, we provide a framework that can be effectively applied to other datasets and may be particularly useful for the study of disorders of consciousness.
静息态功能磁共振成像(fMRI)时间序列的功能连接性(FC)可以使用在时间敏感性(静态与动态)以及连接性估计中所包含区域数量(源自先前图谱)方面存在差异的方法来估计。本文提出了一种使用静息态fMRI记录来识别和量化静息态网络的新框架。该研究采用线性潜在变量模型来生成空间上不同的脑网络及其相关活动。它特别解决了图谱选择问题,以及对所获得的脑网络活动进行统计推断和多变量分析。使用静态FC在来自处于不同麻醉状态下猴子的静息态fMRI记录数据集上展示了该方法。我们的结果表明,两个网络,一个是额顶叶和扣带回网络,另一个是颞顶枕叶(后脑)网络,强烈影响意识的转变,特别是在麻醉和清醒之间。有趣的是,这一观察结果与两种突出的意识理论:意识的全局神经工作空间理论和综合信息理论相一致。所提出的方法还能够从脑网络活动中解读麻醉水平。总体而言,我们提供了一个可以有效应用于其他数据集的框架,并且可能对意识障碍的研究特别有用。