Grosse-Wentrup Moritz, Kumar Akshey, Meunier Anja, Zimmer Manuel
Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria.
Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
PLoS Comput Biol. 2024 Dec 16;20(12):e1012674. doi: 10.1371/journal.pcbi.1012674. eCollection 2024 Dec.
Explaining how neuronal activity gives rise to cognition arguably remains the most significant challenge in cognitive neuroscience. We introduce neuro-cognitive multilevel causal modeling (NC-MCM), a framework that bridges the explanatory gap between neuronal activity and cognition by construing cognitive states as (behaviorally and dynamically) causally consistent abstractions of neuronal states. Multilevel causal modeling allows us to interchangeably reason about the neuronal- and cognitive causes of behavior while maintaining a physicalist (in contrast to a strong dualist) position. We introduce an algorithm for learning cognitive-level causal models from neuronal activation patterns and demonstrate its ability to learn cognitive states of the nematode C. elegans from calcium imaging data. We show that the cognitive-level model of the NC-MCM framework provides a concise representation of the neuronal manifold of C. elegans and its relation to behavior as a graph, which, in contrast to other neuronal manifold learning algorithms, supports causal reasoning. We conclude the article by arguing that the ability of the NC-MCM framework to learn causally interpretable abstractions of neuronal dynamics and their relation to behavior in a purely data-driven fashion is essential for understanding biological systems whose complexity prohibits the development of hand-crafted computational models.
解释神经元活动如何产生认知,可以说是认知神经科学中最重大的挑战。我们引入了神经认知多层次因果建模(NC-MCM),这是一个框架,通过将认知状态解释为神经元状态的(行为和动态)因果一致抽象,弥合了神经元活动与认知之间的解释鸿沟。多层次因果建模使我们能够在保持物理主义(与强二元论相对)立场的同时,交替地推理行为的神经元原因和认知原因。我们介绍了一种从神经元激活模式学习认知水平因果模型的算法,并展示了其从钙成像数据中学习秀丽隐杆线虫认知状态的能力。我们表明,NC-MCM框架的认知水平模型以图形的形式简洁地表示了秀丽隐杆线虫的神经元流形及其与行为的关系,与其他神经元流形学习算法不同,它支持因果推理。我们在文章结尾指出,NC-MCM框架以纯数据驱动的方式学习神经元动力学的因果可解释抽象及其与行为的关系的能力,对于理解那些因复杂性而无法开发手工计算模型的生物系统至关重要。