Cui Ying, Zhang Zhihan, Shi Yuan, Hu Yongjie
Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
J Mater Chem B. 2025 Jun 18;13(24):6916-6948. doi: 10.1039/d4tb02876g.
Visualizing the chemical compositions of biological samples is pivotal to advancing biological sciences, with the past two decades witnessing the emergence of innovative chemical imaging platforms such as single-molecule imaging, coherent Raman scattering microscopy, transient absorption microscopy, photothermal microscopy, ambient ionization mass spectrometry, electrochemical microscopy, and advanced chemical probes. These technologies have enabled significant breakthroughs in diagnosing pathological transitions, designing targeted therapies, and understanding drug resistance mechanisms. Recent advancements in resolution, contrast, sensitivity, and speed have transformed the field, with techniques like fluorescence, infrared absorption, and Raman scattering being widely applied across diverse biological domains. This review provides a comprehensive overview of the evolution and current state of chemical imaging technologies, coupled with systematic analyses of data processing workflows, including pre-processing, machine learning-assisted pattern extraction, and neural network-based predictions. Artificial intelligence (AI) and machine learning-assisted imaging are transforming chemical imaging through key advancements such as improved resolution and sensitivity noise reduction techniques, enhanced data analysis (, spectral unmixing, pattern recognition), automated feature extraction using neural networks, real-time processing high-performance cluster, and data fusion across optical platforms. These innovations are significantly advancing both current applications and the future development of chemical imaging techniques in biomedical research. However, several critical challenges remain, including the scarcity of high-quality training datasets, limited generalizability across different instruments and experimental conditions, high computational costs, challenges in output interpretability and trust, and the lack of standardized validation protocols across different approaches. Looking ahead, the integration of bioimaging into cell biology, lipid research, tumor studies, microbiology, neurobiology, and developmental biology is anticipated to expand its impact, aided by interdisciplinary expertise in biochemistry, physics, and optical engineering. These developments promise unprecedented resolution and speed, facilitating high-speed, high-resolution imaging of living systems, with applications leading to discoveries such as biomarkers for cancer aggressiveness and drug resistance. Moreover, the miniaturization and commercialization of imaging platforms are broadening accessibility, enabling on-site clinical investigations and measurements, underscoring the transformative potential of chemical imaging in advancing biological science and medical research.
可视化生物样本的化学成分对于推动生物科学发展至关重要,在过去二十年中,出现了诸如单分子成像、相干拉曼散射显微镜、瞬态吸收显微镜、光热显微镜、常压电离质谱、电化学显微镜和先进化学探针等创新化学成像平台。这些技术在诊断病理转变、设计靶向治疗和理解耐药机制方面取得了重大突破。分辨率、对比度、灵敏度和速度方面的最新进展改变了该领域,荧光、红外吸收和拉曼散射等技术在不同生物领域得到广泛应用。本综述全面概述了化学成像技术的发展历程和现状,并对数据处理工作流程进行了系统分析,包括预处理、机器学习辅助模式提取和基于神经网络的预测。人工智能(AI)和机器学习辅助成像正在通过诸如提高分辨率和灵敏度、降噪技术、增强数据分析(如光谱解混、模式识别)、使用神经网络自动特征提取、实时处理、高性能集群以及跨光学平台的数据融合等关键进展来改变化学成像。这些创新正在显著推动化学成像技术在生物医学研究中的当前应用和未来发展。然而,仍然存在一些关键挑战,包括高质量训练数据集的稀缺、不同仪器和实验条件下的通用性有限、高计算成本、输出解释性和可信度方面的挑战,以及不同方法缺乏标准化验证协议。展望未来,借助生物化学、物理学和光学工程等跨学科专业知识,预计将生物成像整合到细胞生物学、脂质研究、肿瘤研究、微生物学、神经生物学和发育生物学中,这将扩大其影响力。这些发展有望实现前所未有的分辨率和速度,促进对生命系统的高速、高分辨率成像,其应用将带来诸如癌症侵袭性和耐药性生物标志物等发现。此外,成像平台的小型化和商业化正在扩大其可及性,实现现场临床研究和测量,凸显了化学成像在推动生物科学和医学研究方面的变革潜力。