Adam Nabil, Wieder Robert
Phalcon, LLC, Manhasset, NY 11030, USA.
Newark Campus, Rutgers University, Newark, NJ 07102, USA.
Cancers (Basel). 2024 Dec 1;16(23):4033. doi: 10.3390/cancers16234033.
Treatment of women with stage IV breast cancer (BC) extends population-averaged survival by only a few months. Here, we develop a model for identifying individual circumstances where appropriate therapy will extend survival while minimizing adverse events.
Our goal is to develop high-confidence deep learning (DL) models to predict survival in individual stage IV breast cancer patients based on their unique circumstances generated by patient, cancer, treatment, and adverse event variables. We previously showed that predictive DL survival modeling of potentially curable stage I-III patients can be improved by combining time-fixed and time-varying covariates. Here, we demonstrate that DL-based predictive survival modeling in stage IV patients, where treatment does not offer a cure, can generate accurate individual survival predictions by considering subsequent lines of potential treatment to guide therapy. This guidance is rarely obtainable in the nearly limitless scenarios of metastatic disease.
DESIGN, SETTING, AND PARTICIPANTS: We applied the SEER-Medicare linked dataset from 1991 to 2016 to investigate 14,312 unique stage IV patients with 1,880,153 entries. We used DeepSurv- and DeepHit-, Nnet-survival- and Cox-Time DL-based predictive models to consider the combination of time-fixed and time-varying covariates at each visit for each patient. We adopted random sampling to divide the input dataset into training, validation, and testing sets. We verified the models' implementation using the pycox package and fine-tuned the models using the open-source library Amazon SageMaker Python SDK 2.232.2 (software development kit). Our results demonstrated the proof of principle of the models by generating individual patients' survival curves.
By extending the survival prediction models to consider stage IV BC patients' time-fixed and time-varying covariates, we achieved a prediction error below 10%. Based on their circumstance-specific situations, these models can predict survival in individual stage IV patients with high confidence. The models will serve as an important adjunct to treatment decisions in patients with stage IV BC and test what-if scenarios of treatment or no treatment options to optimize therapy for extending patient lives and minimizing adverse events.
IV期乳腺癌(BC)女性患者的治疗仅能将总体平均生存期延长几个月。在此,我们开发了一种模型,用于识别在适当治疗可延长生存期同时将不良事件降至最低的个体情况。
我们的目标是开发高置信度的深度学习(DL)模型,以根据患者、癌症、治疗和不良事件变量所产生的独特情况,预测个体IV期乳腺癌患者的生存期。我们之前表明,通过结合固定时间和随时间变化的协变量,可以改进潜在可治愈的I - III期患者的预测性DL生存建模。在此,我们证明,在治疗无法治愈的IV期患者中基于DL的预测性生存建模,通过考虑后续潜在治疗方案来指导治疗,可以生成准确的个体生存预测。在转移性疾病几乎无穷无尽的情况下,这种指导很少能够获得。
设计、设置和参与者:我们应用了1991年至2016年的SEER - 医疗保险链接数据集,以研究14312名独特的IV期患者,共有1880153条记录。我们使用基于DeepSurv - 和DeepHit - 、Nnet - survival - 和Cox - Time DL的预测模型,来考虑每位患者每次就诊时固定时间和随时间变化的协变量的组合。我们采用随机抽样将输入数据集分为训练集、验证集和测试集。我们使用pycox包验证了模型的实现,并使用开源库亚马逊SageMaker Python SDK 2.232.2(软件开发工具包)对模型进行了微调。我们的结果通过生成个体患者的生存曲线证明了模型的原理。
通过扩展生存预测模型以考虑IV期BC患者的固定时间和随时间变化的协变量,我们实现了低于10%的预测误差。基于其特定情况,这些模型能够高置信度地预测个体IV期患者的生存期。这些模型将成为IV期BC患者治疗决策的重要辅助工具,并测试治疗或不治疗方案的假设情景,以优化治疗方案,延长患者生命并减少不良事件。