Suppr超能文献

用于预测甲状腺乳头状癌中央淋巴结转移的多模态磁共振成像深度学习

Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer.

作者信息

Wang Xiuyu, Zhang Heng, Fan Hang, Yang Xifeng, Fan Jiansong, Wu Puyeh, Ni Yicheng, Hu Shudong

机构信息

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210018, China.

Department of Radiology, Affiliated hospital of Jiangnan University, Wuxi 214121, China.

出版信息

Cancers (Basel). 2024 Dec 2;16(23):4042. doi: 10.3390/cancers16234042.

Abstract

BACKGROUND

Central lymph node metastasis (CLNM) in papillary thyroid cancer (PTC) significantly influences surgical decision-making strategies.

OBJECTIVES

This study aims to develop a predictive model for CLNM in PTC patients using magnetic resonance imaging (MRI) and clinicopathological data.

METHODS

By incorporating deep learning (DL) algorithms, the model seeks to address the challenges in diagnosing CLNM and reduce overtreatment. The results were compared with traditional machine learning (ML) models. In this retrospective study, preoperative MRI data from 105 PTC patients were divided into training and testing sets. A radiologist manually outlined the region of interest (ROI) on MRI images. Three classic ML algorithms (support vector machine [SVM], logistic regression [LR], and random forest [RF]) were employed across different data modalities. Additionally, an AMMCNet utilizing convolutional neural networks (CNNs) was proposed to develop DL models for CLNM. Predictive performance was evaluated using receiver operator characteristic (ROC) curve analysis, and clinical utility was assessed through decision curve analysis (DCA).

RESULTS

Lesion diameter was identified as an independent risk factor for CLNM. Among ML models, the RF-(T1WI + T2WI, T1WI + T2WI + Clinical) models achieved the highest area under the curve (AUC) at 0.863. The DL fusion model surpassed all ML fusion models with an AUC of 0.891.

CONCLUSIONS

A fusion model based on the AMMCNet architecture using MRI images and clinicopathological data was developed, effectively predicting CLNM in PTC patients.

摘要

背景

甲状腺乳头状癌(PTC)中的中央淋巴结转移(CLNM)显著影响手术决策策略。

目的

本研究旨在利用磁共振成像(MRI)和临床病理数据建立PTC患者CLNM的预测模型。

方法

通过纳入深度学习(DL)算法,该模型旨在应对CLNM诊断中的挑战并减少过度治疗。将结果与传统机器学习(ML)模型进行比较。在这项回顾性研究中,105例PTC患者的术前MRI数据被分为训练集和测试集。一名放射科医生在MRI图像上手动勾勒出感兴趣区域(ROI)。在不同的数据模式下采用了三种经典的ML算法(支持向量机[SVM]、逻辑回归[LR]和随机森林[RF])。此外,还提出了一种利用卷积神经网络(CNN)的AMMCNet来开发CLNM的DL模型。使用受试者操作特征(ROC)曲线分析评估预测性能,并通过决策曲线分析(DCA)评估临床实用性。

结果

病变直径被确定为CLNM的独立危险因素。在ML模型中,RF-(T1WI + T2WI,T1WI + T2WI + 临床)模型的曲线下面积(AUC)最高,为0.863。DL融合模型的AUC为0.891,超过了所有ML融合模型。

结论

开发了一种基于AMMCNet架构的融合模型,使用MRI图像和临床病理数据,有效预测PTC患者的CLNM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3c2/11640553/7330b723b7fe/cancers-16-04042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验