Suppr超能文献

使用基于特征工程开发的CBIR系统检测胆囊疾病类型

Detection of Gallbladder Disease Types Using a Feature Engineering-Based Developed CBIR System.

作者信息

Bozdag Ahmet, Yildirim Muhammed, Karaduman Mucahit, Mutlu Hursit Burak, Karaduman Gulsah, Aksoy Aziz

机构信息

Department of General Surgery, School of Medicine, Firat University, Elazığ 23119, Turkey.

Department of Computer Engineering, Malatya Turgut Ozal University, Malatya 44210, Turkey.

出版信息

Diagnostics (Basel). 2025 Feb 25;15(5):552. doi: 10.3390/diagnostics15050552.

Abstract

Early detection and diagnosis are important when treating gallbladder (GB) diseases. Poorer clinical outcomes and increased patient symptoms may result from any error or delay in diagnosis. Many signs and symptoms, especially those related to GB diseases with similar symptoms, may be unclear. Therefore, highly qualified medical professionals should interpret and understand ultrasound images. Considering that diagnosis via ultrasound imaging can be time- and labor-consuming, it may be challenging to finance and benefit from this service in remote locations. Today, artificial intelligence (AI) techniques ranging from machine learning (ML) to deep learning (DL), especially in large datasets, can help analysts using Content-Based Image Retrieval (CBIR) systems with the early diagnosis, treatment, and recognition of diseases, and then provide effective methods for a medical diagnosis. The developed model is compared with two different textural and six different Convolutional Neural Network (CNN) models accepted in the literature-the developed model combines features obtained from three different pre-trained architectures for feature extraction. The cosine method was preferred as the similarity measurement metric. Our proposed CBIR model achieved successful results from six other different models. The AP value obtained in the proposed model is 0.94. This value shows that our CBIR-based model can be used to detect GB diseases.

摘要

在治疗胆囊疾病时,早期检测和诊断至关重要。诊断过程中的任何错误或延误都可能导致较差的临床结果并加重患者症状。许多体征和症状,尤其是那些与具有相似症状的胆囊疾病相关的体征和症状,可能并不明确。因此,高素质的医学专业人员应解读和理解超声图像。鉴于通过超声成像进行诊断可能既耗时又费力,在偏远地区为这项服务提供资金并从中受益可能具有挑战性。如今,从机器学习(ML)到深度学习(DL)的人工智能(AI)技术,尤其是在大型数据集中,可帮助分析人员使用基于内容的图像检索(CBIR)系统进行疾病的早期诊断、治疗和识别,进而为医学诊断提供有效的方法。将所开发的模型与文献中认可的两种不同纹理模型和六种不同的卷积神经网络(CNN)模型进行比较——所开发的模型结合了从三种不同预训练架构中获得的特征用于特征提取。选择余弦方法作为相似性度量指标。我们提出的CBIR模型比其他六种不同模型取得了更成功的结果。所提出模型中获得的AP值为0.94。该值表明我们基于CBIR的模型可用于检测胆囊疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5572/11899127/60f4e5497830/diagnostics-15-00552-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验