Gomez Diego, Salvador Pablo, Rodrigo Juan Fernando, Gil Jorge
Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy.
Council of Science and Education, Castilla and Leon Regional Government, 47014 Valladolid, Spain.
Plants (Basel). 2024 Dec 7;13(23):3436. doi: 10.3390/plants13233436.
Remote sensing is a valuable tool in precision agriculture due to its spatial and temporal coverage, non-destructive method of data collection, and cost-effectiveness. In this study, we measured the canopy reflectance of potato ( L.) crops on a plant-by-plant basis with a handheld spectrometer instrument. Our study pursues two primary objectives: (1) determining the optimal temporal aggregation for measuring canopy signals related to potato yield and (2) identifying the best spectral bands in the 350-2500 nm domain and vegetation indices. The study was conducted over two consecutive years (2020 and 2021) with 60 plants per plot, encompassing six potato varieties and three replicates annually throughout the growth season. Employing correlation analysis and dimensionality reduction, we identified 23 independent features significantly correlated with tuber yield. We used multiple linear regression analysis to model the relationship between the selected features and yield and to compare their influence in the fitted model. We used the Leave-One-Out Cross-Validation (LOOCV) method to assess the validity of the model (RMSE = 702 g and %RMSE = 29.2%). The most significant features included the Gitelson2 and Vogelmann indices. The optimal time period for measurements was determined to be from 56 to 100 days after planting. These findings may contribute to the advancement of precision farming by proposing tailored sensor applications, paving the way for improved agricultural practices and enhanced food security.
由于其空间和时间覆盖范围、非破坏性的数据收集方法以及成本效益,遥感技术是精准农业中的一项重要工具。在本研究中,我们使用手持式光谱仪逐株测量了马铃薯(L.)作物的冠层反射率。我们的研究追求两个主要目标:(1)确定测量与马铃薯产量相关的冠层信号的最佳时间聚合;(2)识别350 - 2500纳米域内的最佳光谱波段和植被指数。该研究连续进行了两年(2020年和2021年),每个地块有60株植物,在整个生长季节每年涵盖六个马铃薯品种和三个重复。通过相关性分析和降维,我们确定了23个与块茎产量显著相关的独立特征。我们使用多元线性回归分析来建立所选特征与产量之间的关系模型,并比较它们在拟合模型中的影响。我们使用留一法交叉验证(LOOCV)方法评估模型的有效性(均方根误差 = 702克,相对均方根误差 = 29.2%)。最显著的特征包括Gitelson2和Vogelmann指数。确定的最佳测量时间段为种植后56至100天。这些发现可能通过提出量身定制的传感器应用促进精准农业的发展,为改进农业实践和加强粮食安全铺平道路。