Suppr超能文献

利用田间光谱仪数据对模拟哨兵-2数据的作物氮素提取方法

Crop Nitrogen Retrieval Methods for Simulated Sentinel-2 Data Using In-Field Spectrometer Data.

作者信息

Perich Gregor, Aasen Helge, Verrelst Jochem, Argento Francesco, Walter Achim, Liebisch Frank

机构信息

Group of Crop Science, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.

Image Processing Laboratory (IPL), University of Valencia Science Park, 46980 Valencia, Spain.

出版信息

Remote Sens (Basel). 2021 Jun 19;13(12):2404. doi: 10.3390/rs13122404.

Abstract

Nitrogen (N) is one of the key nutrients supplied in agricultural production worldwide. Over-fertilization can have negative influences on the field and the regional level (e.g., agro-ecosystems). Remote sensing of the plant N of field crops presents a valuable tool for the monitoring of N flows in agro-ecosystems. Available data for validation of satellite-based remote sensing of N is scarce. Therefore, in this study, field spectrometer measurements were used to simulate data of the Sentinel-2 (S2) satellites developed for vegetation monitoring by the ESA. The prediction performance of normalized ratio indices (NRIs), random forest regression (RFR) and Gaussian processes regression (GPR) for plant-N-related traits was assessed on a diverse real-world dataset including multiple crops, field sites and years. The plant N traits included the mass-based N measure, N concentration in the biomass (N), and an area-based N measure approximating the plant N uptake (NUP). Spectral indices such as normalized ratio indices (NRIs) performed well, but the RFR and GPR methods outperformed the NRIs. Key spectral bands for each trait were identified using the RFR variable importance measure and the Gaussian processes regression band analysis tool (GPR-BAT), highlighting the importance of the short-wave infrared (SWIR) region for estimation of plant N-and to a lesser extent the NUP. The red edge (RE) region was also important. The GPR-BAT showed that five bands were sufficient for plant N trait and leaf area index (LAI) estimation and that a surplus of bands effectively reduced prediction performance. A global sensitivity analysis (GSA) was performed on all traits simultaneously, showing the dominance of the LAI in the mixed remote sensing signal. To delineate the plant-N-related traits from this signal, regional and/or national data collection campaigns producing large crop spectral libraries (CSL) are needed. An improved database will likely enable the mapping of N at the agro-ecosystem level or for use in precision farming by farmers in the future.

摘要

氮(N)是全球农业生产中供应的关键养分之一。过度施肥会对田间和区域层面(如农业生态系统)产生负面影响。对大田作物的植物氮进行遥感监测,为农业生态系统中氮流的监测提供了一种有价值的工具。用于验证基于卫星的氮遥感的可用数据稀缺。因此,在本研究中,利用野外光谱仪测量来模拟欧洲航天局为植被监测而开发的哨兵 - 2(S2)卫星的数据。在一个包含多种作物、田间地点和年份的多样化实际数据集上,评估了归一化比率指数(NRI)、随机森林回归(RFR)和高斯过程回归(GPR)对与植物氮相关性状的预测性能。植物氮性状包括基于质量的氮度量、生物量中的氮浓度(N)以及近似植物氮吸收量的基于面积的氮度量(NUP)。归一化比率指数(NRI)等光谱指数表现良好,但RFR和GPR方法优于NRI。使用RFR变量重要性度量和高斯过程回归波段分析工具(GPR - BAT)确定了每个性状的关键光谱波段,突出了短波红外(SWIR)区域对植物氮估计的重要性,以及在较小程度上对NUP估计的重要性。红边(RE)区域也很重要。GPR - BAT表明,五个波段足以估计植物氮性状和叶面积指数(LAI),过多的波段会有效降低预测性能。对所有性状同时进行了全局敏感性分析(GSA)。结果表明叶面积指数在混合遥感信号中占主导地位。为了从该信号中描绘出与植物氮相关的性状,需要开展区域和/或国家数据收集活动,以生成大型作物光谱库(CSL)。一个改进的数据库可能会使未来在农业生态系统层面绘制氮含量图或供农民用于精准农业成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5ac/7613346/66089142d8d4/EMS152668-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验