Hu Rongbin, Zhang Jin, Jawdy Sara, Sreedasyam Avinash, Lipzen Anna, Wang Mei, Ng Vivian, Daum Christopher, Keymanesh Keykhosrow, Liu Degao, Hu Alex, Chen Jin-Gui, Tuskan Gerald A, Schmutz Jeremy, Yang Xiaohan
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Plants (Basel). 2024 Dec 8;13(23):3444. doi: 10.3390/plants13233444.
Temperature stress is one of the major limiting environmental factors that negatively impact global crop yields. is an obligate crassulacean acid metabolism (CAM) plant species, exhibiting much higher water-use efficiency and tolerance to drought and heat stresses than C or C plant species. Previous studies on gene expression responses to low- or high-temperature stress have been focused on C and C plants. There is a lack of information about the regulation of gene expression by low and high temperatures in CAM plants. To address this knowledge gap, we performed transcriptome sequencing (RNA-Seq) of leaf and root tissues of under cold (8 °C), normal (25 °C), and heat (37 °C) conditions at dawn (i.e., 2 h before the light period) and dusk (i.e., 2 h before the dark period). Our analysis revealed differentially expressed genes (DEGs) under cold or heat treatment in comparison to normal conditions in leaf or root tissue at each of the two time points. In particular, DEGs exhibiting either the same or opposite direction of expression change (either up-regulated or down-regulated) under cold and heat treatments were identified. In addition, we analyzed gene co-expression modules regulated by cold or heat treatment, and we performed in-depth analyses of expression regulation by temperature stresses for selected gene categories, including CAM-related genes, genes encoding heat shock factors and heat shock proteins, circadian rhythm genes, and stomatal movement genes. Our study highlights both the common and distinct molecular strategies employed by CAM and C/C plants in adapting to extreme temperatures, providing new insights into the molecular mechanisms underlying temperature stress responses in CAM species.
温度胁迫是对全球作物产量产生负面影响的主要限制环境因素之一。[植物名称]是一种专性景天酸代谢(CAM)植物物种,与C3或C4植物物种相比,表现出更高的水分利用效率以及对干旱和热胁迫的耐受性。先前关于基因表达对低温或高温胁迫响应的研究主要集中在C3和C4植物上。关于CAM植物中低温和高温对基因表达调控的信息匮乏。为了填补这一知识空白,我们在黎明(即光照期前2小时)和黄昏(即黑暗期前2小时)对[植物名称]的叶片和根组织在寒冷(8℃)、正常(25℃)和高温(37℃)条件下进行了转录组测序(RNA-Seq)。我们的分析揭示了在两个时间点的每个时间点,与正常条件相比,叶片或根组织在寒冷或热处理下的差异表达基因(DEG)。特别是,鉴定出了在寒冷和热处理下表现出相同或相反表达变化方向(上调或下调)的DEG。此外,我们分析了受寒冷或热处理调控的基因共表达模块,并对选定基因类别(包括与CAM相关的基因、编码热激因子和热激蛋白的基因、昼夜节律基因和气孔运动基因)的温度胁迫表达调控进行了深入分析。我们的研究突出了CAM和C3/C4植物在适应极端温度时所采用的共同和不同的分子策略,为CAM物种温度胁迫响应的分子机制提供了新的见解。